
ADP-A260 632

The SaM Synchronization Manager MTR 92B0000175

Distributed Object Oriented January 1993

Programming FY92 Final Report

Myra Jean Prele
Thomas J. Brando

93-03875

MITRE I-' N-STATEMENR

Bedford. Massachusetts ________R-'IB ___________________

"Approved for public release)
~ nO A00

ForM Apr~roved

REPORT DOCUMENTATION PAGE o, 1 0704-0188

-c 3i z -. - V >:: -

1. AGENCY USE ONLY (Leave blanK 2. REPORT DATE 3 REPORT TYPE AND DATES COVERED
iIJanuary 1993 7 7

4. TITLE AND SU8T;TLE 5. FUNDINC NJMBERS

The SaM Synchronization Manager Distributed Object

Oriented Programming FY92 Final Report

Myra Jean Prelle
Thomas J. Brando
v E R F F: N G!N:2C- 4 UT •.' NAME($ AN L I, E S_ S ,1 E S) PERFOFMIN' 3F,._-AN!Z: T13r•

REPORT NUMBEF

The MITRE Corporation
202 Burlington Road MTR 92B0000175

Bedford, MA 01730-1420

-- ~~ . , pr1, PA SG RNC' -. r*•' '.,/E

same as above same as above

-. ,-"- _- -" .

Approved for public release; distribution unlimited.

We describe a multicomputer run-time executive called the Synchronization

Manager (SaM). SaM makes it easier to develop, debug, and enhance multicomputer

software because it automatically manages the synchronization required by an

object-oriented program to produce the same results as a single-computer

execution. We describe our experience with using SaM to run several application
programs (image perspective transformation, neural network training, and

multiple target tracking) written in an object-oriented extension of C, called
CPM, on a Svmult S2010 multicomputer. CPM is described and performance results

are presented that suggest the viability of our approach.

S~80
multicomputer, Synchronization Manager, object-oriented

extension of C -

Unclassified Unclassified Unclassified Urilimitc 'd

The SaM Synchronization Manager WMT 92B000 175

Distributed Object Oriented January 1993

Programming FY92 Final Report

Myra Jean Prelle Accesion For

Thomas J. Brando NI
DTISC' I

DTI ,C i A

By

A\/u~ x32(1or

Dist ~ pC i -3

Contract Sponsor RL'C3AB D-TIC IQ TTY I' -1-CTED 3
Contract No. F19628-89-C-0001
Project No. 7850
Dept G040

Approved for public release;
distribution unlimited.

MM[E
Bedford, Massachusetts

ABSTRACT

We describe a multicomputer run-time executive called the Synchronization Manager
(SaM). SaM makes it easier to develop, debug, and enhance multicomputer software
because it automatically manages the synchronization required by an object-oriented
program to produce the same results as a single-computer execution. We describe our
experience with using SaM to run several application programs (image perspective
transformation, neural network training, and multiple target tracking) written in an object-
oriented extension of C, called CPM, on a Symult S2010 multicomputer. CPM is
described and performance results are presented that suggest the viability of our
approach.

iii

ACKNOWLEDGMENTS

The work described in this paper was performed by The MITRE Corporation under a
project funded by the Air Force Electronic Systems Division. The project office is at the
Rome Laboratory, Griffiss Air Force Base, Rome, New York. The project officer is
Vaughn Combs.

In addition, we thank Ann Wollrath. She designed and implemented the CPM language.
Her work with the neural network application led to her design and implementation of the
assert method extension and the send to self optimization. We also wish to thank
Lori Phillips for her thoughtful and tireless contributions to the work described in this
paper.

iv

TABLE OF CONTENTS

SECTION PAGE

1. Introduction ... 1

2. The Basic Synchronization M anager ... 3
Com putation Tim e .. 4
G lobal Virtual Tim e .. 7

3. Application Language .. 9

4. Synchronization M anager Enhancem ents .. 13
Freeing Objects D ynam ically .. 13
Balanced Trees ... 13
M ultifutures ... 13
A ssert M ethod ... 17
Graphical Front-end .. 17
Send to Self Optimization ... 18
G VT ... 18

5. Im age Processing Application .. 21

6. Neural Netw ork Application .. 47

7. Tracker Application .. 57

8. Concluding Rem arks .. 67

List of References .. 69

Application Language Extensions .. A-1

LIST OF FIGURES

FIGURE PAGE

1. Serial Execution ... 3

2. Event Order Synchronization ... 5

3. Recursive Message Cycle ... 6

4. Multifuture Creation .. 14

5. Multifutures as Arguments .. 15

6. Setting Multifutures and Getting Their Values .. 16

7. Image with 200 Vertices ... 22

8. Perspective Transformation Control Flow .. 22

9. 200 Vertices Printing Suppressed Four and Seven Nodes Different Views 23

10. 200 Vertices Printing Enabled Four and Seven Nodes Different Views 24

11. Perspective Transformation 200 Vertices Sequential (3) 25

12. Perspective Transformation 200 Vertices Sequential (1) 26

13. Perspective Transformation 160 Vertices .. 26

14. Perspective Transformation 240 Vertices .. 27

15. Four Nodes Printing Enabled ... 27

16. 160 Vertices Printing Enabled .. 28

17. 200 Vertices Printing Enabled .. 28

18. 240 Vertices Printing Enabled .. 29

19. 200 Vertices Printing Suppressed ... 29

20. Seven Nodes Printing Suppressed .. 30

21. Seven Nodes Printing Enabled .. 31

22. 200 Vertices Printing Suppressed Four and Seven Nodes 31

23. 200 Vertices Printing Enabled Four and Seven Nodes 32

24. 200 Vertices Output Object Printing Suppressed .. 33

25. 200 Vertices Output Object Printing Suppressed Four and Seven Nodes 33

26. States Saved on Node 1 ... 38

27. Environments Saved on Node 1 .. 38

28. External Messages Sent by Node I ... 39

29. States Saved on Node 0 ... 40

30. Environments Saved on Node 0 .. 41

vi

31. External Messages Sent by Node 0 ... 41

32. Application Messages Sent by Node 0 ... 42

33. GVT Calculations Printing Enabled .. 43

34. Send Messages and Print Only .. 44

35. Send Messages and Print Run-Time Ranges ... 44

36. Neural Network for Symmetry ... 47

37. Neural Network Application Control Flow ... 49

38. Neural Network Application Control Flow with Assert 50

39. Vary Number of Nets .. 52

40. Vary Number of Patterns .. 53

41. Vary Number of Hidden Units .. 54

42. Vary Number of Epochs ... 55

43. Initial Tracker Application Control Flow ... 58

44. Tracker Application Control Flow With Reloc- - Object 60

45. Tracker Application Control Flow With Ar ulator Objects 60

46. Final Tracker Application Control Flow .. 62

47. Tracker Application Run Times With Printing ... 65

48. Tracker Application Run Times Without Printing ... 66

49. Run-Time Difference Between Printing and Nonprinting Runs 66

vii

LIST OF TABLES

TABLE PAGE

1. Oldstates Stack of a M ultifuture .. 16

2. Oldstates Stack of a M ultifuture .. 17

3. Data Collected During SaM Image Processing Runs .. 34

4. Data Collected During SaM Image Processing Runs for Node 1 37

5. Data Collected During SaM Image Processing Runs for Node 0 39

6. Data Collected During a Training Session ... 50

7. Data Collected During an 8-Tracker Run With 105 Threats 64

8. Data Collected During a 13-Tracker Run With 145 Threats 64

"viii

SECTION 1

INTRODUCTION

Performance requirements for modem military application programs dictate the need for
more processing power than is available in conventional single-computer systems.
Existing systems, or systems under development, that use parallel processors range from
radar or other sensor systems, the Air Force/Army Joint Surveillance and Targeting
System (Joint STARS) or the Navy's Sea Wolf Submarine Combat System (AN/BSY-2),
to advanced Airspace Planning Functions (APF) for the FAA, weather and climate
models for the FAA and NASA Earth Observation System (EOS), and the Automated
Fingerprint Identification System (AFIS) being developed by the FBI (Federal Bureau of
Investigation). Virtually every new system that must process large volumes of data or
complete the processing in a small amount of time is likely to rely on some form of
parallel processing. The problem with multicomputers is that they are inherently much
harder to program than single-computer systems. Programming a multicomputer
application may require managing the synchronization among tens, hundreds, or even
thousands of independent processes that must be coordinated to solve a single problem.
This project seeks to make programming such computers significantly less difficult, thus
reducing the cost and risk of using them in government systems.

A major concern is the programmer's ability to manage the synchronization required by a
large complex program. Perhaps the interactions among the program elements is very
complex, ptrhaps it makes use of code written by others, or perhaps synchronization at
particular points in the program depends on input data. Debugging multicomputer
programs is generally more difficult than single-computer programs, because they may
exhibit intermittent errors due to slight timing differences when two or more threads of
control access the same memory location in an unsynchronized manner. When
enhancements are made to a multicomputer program, errors may arise caused by timing
differences introduced by the enhancements. In an attempt to address these issues, we are
developing a multicomputer run-time executive called the Synchronization Manager
(SaM). SaM makes it easier to develop, debug, and enhance multicomputer software,
because it automatically manages the synchronization required by an object-oriented
program to produce the same results as a single-computer execution. Timing differences
have no effect on the results produced by an application program executed on a
multicomputer using SaM. In addition, SaM can exploit input data-dependent
concurrency that can only be identified at run time.

Object-oriented programming is a good model of computation for distributed-memory,
message-passing multicomputers, because it minimizes global information and provides
natural communication and synchronization boundaries. When writing programs for a
multicomputer, it is a good idea to assign data items and code that will be used together
to the same processor. When writing an object-oriented program, the programmer

I

divides the data and the functions to control that data into objects. A side effect of this
assignment is that data and functioi's that will be used together are identified. Thus,
object-oriented programming facilitates the automatic mapping of software to hardware
performed by SaM. Most importantly, these are a natural part of the object-oriented
programming model of computation.

The synchronization manager uses future objects and checkpoint and rollback to generate
and manage synchronization. Context objects manage method execution, including
handling recursive cycles of messages correctly. There are a number of objects which
comqiise the SaM run-time executive. These objects manage synchronization and
communication for the application program. SaM cannot run ordinary C'++ application
programs; memory management and error handling must be carefully controlled in SaM.
However, our application programming language, CPM, is syntactically similar to C++.
In [Prelle:92], we described the synchronization manager and the application language in
detail. We also described our results when we tested SaM using a synthetic application
program generator to run application programs written in CPM on a Symult S2010
multicomputer. In addition to testing the correctness of the SaM implementation, we
have also shown the basic correctness of the synchronization manager model
mathematically. [Bridgland:91] contains the details of the mathematical proofs,
[Prelle:90] contains a more intuitive, descriptive exposition of the arguments and the
results. In [Brando:92], we described a fault-tolerant Lisp language implementation of
SaM.

In this paper, we will briefly describe the synchronization manager as well as the
enhancements made to SaM and CPM this year to improve performance and provide
language constructs to allow the application program developer to control
synchronization directly. We will also describe our experience using SaM to run several
application programs-image perspective transformation, neural network training, and
multiple target tracking-written in CPM, on a Symult S2010 multicomputer.

2

SECTION 2

THE BASIC SYNCHRONIZATION MANAGER

The run-time behavior of a program with a given input data set can be represented as a
directed graph with cycles (figure 1). The circles in this figure represent objects, and the
arrows represent messages. When an object receives a message, the method associated
with that kind of message begins executing. The labels on the arrows show the order in
which messages are processed when we execute this program on a single computer.
Every arrow represents a request for processing. Associated with each request is a reply
message that is not shown.

A

1 7 11

A®4 10 1
Figure 1. Serial Execution

In SaM, each object in the system that requires synchronization services is associated
with an instance of the synchronization manager class. We refer to all instances of this
class as the synchronization manager.

SaM uses data-driven synchronization and speculative computation to gain concurrency,
and checkpoint and rollback to ensure the same results as a single-computer execution.
Data-driven synchronization means a process does not block until it needs the result of
another process' computation. SaM uses future objects to support data-driven
synchronization in basically t'.e same way they are used in the Actor model of concurrent
object-oriented programming [Agha:86]. In Actors, ES-Kit [Chatterjee:89], and
MultiLisp [Halstead:851, it is the programmer's responsibility to manage futures; in SaM,
they are created and managed automatically.

3

On a single-computer system, every object processes one message at a time in a fixed
order (dependent on the input data). On a multicomputer, messages may arrive at an
object in a different order, even with identical input data. Speculative computation means
that an object processes available messages in the correct order, but without regard for
messages not yet delivered, even if those late arriving messages would have been
processed earlier in a sequential execution.

To ensure the same results as a single-computer execution, we generalized the Time
Warp synchronization mechanism that was developed for distributed object-oriented
discrete-event simulation [Jefferson:87] and [Reiher:90]. In both Time Warp and SaM,
an object's state is saved, or checkpointed, whenever it processes a message. If an object
has processed a message out of order, it is rolled back to the appropriate state, and
messages are reprocessed in the correct order. It may be that as a result of processing
messages out of sequence, erroneous messages were sent to other objects. During
rollback negative messages are sent to retract erroneous positive messages. When an
object receives a negative message, there are three possibilities. If the matching positive
message is among the object's unprocessed messages, the two messages cancel each
other. If the positive message has not been received yet (this is possible in a network that
employs adaptive routing [Chow:87]), the object's synchronization manager saves the
negative message so that it can cancel with the positive message when it arrives. If the
positive message has already been processed, the object's synchronization manager rolls
the object back to the state prior to the one the positive message was processed in. The
negative message then cancels with the positive message. A negative message is an
antimessage for its positive message, and a positive message is an antimessage for its
negative message.

In Time Warp, it is the responsibility of the application program to generate timestamps
that are used to order messages properly; SaM generates these timestamps automatically.
An advantage of both Time Warp and SaM is that deadlocks and races cannot occur.
This reduces the difficulty of developing software for multicomputers considerably.

COMPUTATION TIME

In discrete-event simulation, simulation time is used to determine the order that events
(messages) should be processed in, and the application program is responsible for
associating a timestamp with each message an object sends. In general-purpose
computation there is no sense of time, but there is a sense of order. So we developed a
mechanism that works like simulation time to indicate the order that computation events
should be processed in. The synchronization manager associates a string of characters
with each message an object sends. This character string indicates the order that the
message would have been processed in if the computation had been executed
sequentially. Since the role of these character strings is similar to timestamps used in
discrete-event simulation, we call them timestamps also.

4

When an object processes a message with a given timestamp, its synchronization
manager appends a character to that timestamp for every message the object sends. In
figure 2, for example, the object B receives a message with timestamp "a". The
timestamp on the first message that B sends while processing this message is "aa", the
timestamp on the second message is "ab", then "ac", and so on. Notice G's
synchronization manager can recognize that the message from B should be processed
before the message from C because "ac" is less than "ba" lexicographically. However, G
speculatively processes whichever message arrives first. Before any message is
processed, the synchronization manager saves G's current state. Thus, if the "ba"
message arrives and is processed before the "ac" message, G can be rolled back to its
previous state when the "ac" message arrives so that "ac" and "ba" can be processed in
the correct order.

A

a b C

n g r aac ata t ca cc
cb

aaa a b a

Figure 2. Event Order Synchronization

In general, an object processes one message at a time. Recursive cycles of messages are
an exception to this rule. In a recursive cycle, an object must process one message in the
midst of processing another message, for example, a recursive cycle can be established
directly when an object sends a print message to itself in the middle of executing a
method. It is also possible for a recursive cycle to be established indirectly through
another object. When a recursive cycle of messages is recognized, an object processes
more than one message at a time, but the processing is serialized in the same way as in a
conventional sequential execution.

The synchronization manager can recognize when an object has received a message that
is part of a recursive cycle of messages, because the timestamp on the object's current
state will be a prefix of the timestamp on the recursive message (following any rollback

5

that may be necessary as a result of receiving the recursive message). In figure 3, we see
that there are four objects that send messages to M: H, I, J, and N. Suppose that the
processing of the message from I to M results in M sending a message to N, and N's
processing of that message causes N to send a message to M, that is, a recursive cycle is
established. However, let us also assume that none of the other messages to M causes a
recursive cycle to occur.

A

a bc

E G® ®H I J

aa aab ba ea oa

Figure 3. Recursive Message Cycle

M's synchronization manager has to be able to identify three different situations: a
message with an earlier timestamp than the one it just processed or is currently
processing; a message that indicates a cycle is about to take place; a message with a later
timestamp that is not part of a cycle. If the timestamp of the message that M is
processing is greater than the timestamp of the incoming message, then M must be rolled
back. In the example, if M is processing the "caa" message from I when it receives the
"bba" message from H, M must be rolled back.

If the timestamp of the message that M is processing is less than the timestamp of the
incoming message, then M's synchronization manager must decide if the incoming
message should be processed after the current message has been completely processed or
if a recursive cycle is taking place. In the example, if M is processing the "caa" message
from I when it receives the "cba" message from J, M's synchroni;. -tion manager should
keep this message queued until M has completely processed the "cia" message. On the

6

other hand, if M receives the "caaaa" message from N, it must recognize this as a
recursive cycle which must be processed before the completion of the "caa" message.
M's synchronization manager can recognize that a recursive cycle is occurring because
the timestamp of the current message "caa" is a prefix of the timestamp of the incoming
message.

The width of a timestamp depends on two factors: the maximum number of messages an
object can send in the course of executing a single method, and the maximum depth of a
method invocation sequence (for example, A sends a message to B, which in turn sends a
message to C, etc.). The latter is equivalent to the maximum number of stack frames on a
processor's control stack at any given time in a single-computer execution. The 256
ASCII character set permits an object to send as many as 256 messages during the
execution of a single method. For some applications, this may be insufficient. Thus, we
have implemented timestamps as an array of short integers (16-bit) also. In this
implementation, timestamp comparison is performed by comparing individual elements
of the arrays.

Thus, given timestamps A and B (IAI = the length of timestamp A, and IBI = the length of
timestamp B), their relationship is defined as follows:

A=B 4 IAI=IBI A Vi [O, IAI)(A B,)
A<B 4 IAI<lBI A Vi [O,IAI)(4=B,)

v 3j E[0,min{IA[BI}) such that Vi E [0,j)(A, = B) A A1 < B.

This implementation is similar to the Dewey decimal timestamps employed in ParaTran
[Tinker:88].

GLOBAL VIRTUAL TIME

A disadvantage of a rollback scheme is that a good deal of memory can be used to save
old states and messages. Time Warp uses the concept of global virtual time (GVT) to
reduce the amount of information that must be kept. The essential idea is that the
computation is always moving forward. Thus, there is a simulation time (or, in our case,
a computation time) past which the computation can never roll back. This time is the
GVT, and ways exist for computing a safe approximation to GVT dynamically while
computation is proceeding [Jefferson:87, Samadi:85, Bellenot:90].

We can think of GVT as the commit time of the computation. After a GVT estimate is
computed, states and messages with earlier timestamps can be discarded. Speculative
computation can cause the application to commit errors (e.g., divide by zero) that a
sequential execution would not have committed. Eventually, rollback will undo such
errors. Thus, application output and errors can only be committed when GVT has passed
the point in the computation when they were generated.

7

SECTION 3

APPLICATION LANGUAGE

SaM cannot run ordinary C++ application programs, because memory management and
error handling must be carefully controlled in SaM. Our language, CPM (C Plus
Minus-C plus objects, minus pointers), is syntactically similar to C++. Programs
written in CPM can be executed either sequentially without the synchronization manager
or in parallel using SaM. If the program is to be executed sequentially, a translator is
used to translate object-oriented CPM code to ordinary C code. If the program is to be
executed using SaM, a different translator is used to translate the user's code into a form
that will allow SaM to manage its execution.

CPM supports two different types of classes: concurrent classes and local classes.
Concurrent objects may be distributed physically in the system. Their synchronization is
managed by SaM, that is, each of them has a synchronization manager object associated
with it. Concurrent objects have object addresses associated with them. When a
concurrent object is passed as an argument, its object address is passed. Circular
referencing among concurrent objects is supported. When we spoke of application
objects previously, we were describing concurrent application objects.

A local object may be the value of an instance variable of a concurrent object or another
local object. A local object is always part of the state of one and only one concurrent
object. Thus, their synchronization is managed by their concurrent object's
synchronization manager. When a local object is passed as an argument, it is passed by
value. The translator automatically generates copy functions to take care of packaging up
local object arguments. Pointers to local objects and circular referencing among local
objects is not supported (if circular referencing is required, concurrent objects must be
used instead).

All basic C data types are supported such as int, char, long, float, double, and statically
allocated arrays. In order to make building application programs easier, we are
implementing a library of commonly used local classes. Another reason for building
these local classes is that part of their implementation is outside the scope of the
application language as defined and needs special hand coding. Among the local classes
to be implemented are strings, linked lists (parameterized by type), and doubly linked
lists (also parameterized by type). These classes will also be robust, checking for errors
and boundary conditions. Global constants are allowed in the system, but not global
variables. Global variables are not safe since their synchronization is not managed by
SaM.

Because SaM allows objects to process messages out-of-order with respect to a sequential
execution, errors may occur in a SaM execution which would not have occurred in a

9

sequential execution. If the error is caused by processing messages out-of-order, it must
be possible to recover from the error by simply rolling back when the appropriate
message or messages finally arrive and are processed in the correct order. On the other
hand, if the error is a real application error (that is, it would have occurred in a sequential
execution), then it can be committed to when GVT reaches the timestamp on the state
when the error occurred.

For example, errors that can be trapped by the system (divide-by-zero) send a signal to
the executing process. When an error signal is caught, the context is put in an error state.
When a context is in an error state, its synchronization manager will accept messages but
will not allow the context to execute. Eventually either a message will be received that
causes the context to be rolled back to a non-error state, or GVT will reach the timestamp
of the error state and the computation will be aborted.

Because an error may be an artifact of speculative computation and not the application
program, we cannot allow application behavior to endanger the run-time system or other
parts of the application program. Since the application and SaM share the same memory,
if we allowed pointers to local memory in our language as C and C++ do, it would be
possible to write into memory that is not part of the object's currently executing
environment. If this type of error occurred, it would not be corrected by rollback. Thus,
each object's state must be managed separately. For arrays, index out-of-bounds errors
are captured before they occur.

Interactions among concurrent objects are controlled by the SaM runtime system. The
interface points between the application method execution and the run-time system
include: creating an instance of a new concurrent object, sending an application message
to a concurrent object, printing a result, resolving a future, and completing execution
which may include sending a return value to a future.

To support recursive cycles of messages, error handling, and future processing, it must be
possible to suspend and resume method execution (possibly to a previous state) when
appropriate. We would like to treat method execution as a light weight process. Since
LWP libraries are not available on the iPSC/2 or the S2010 (and there are bugs in the Sun
LWP code), we implemented a mechanism that is similar to light-weight processes using
setjmp and longimp system calls. To save the state of an executing method, we must save
all registers, local variables (the stack), instance variables of the object, and method
arguments. setjmp suffices to save all registers, but does not take care of saving anything
on the stack. We added code to save the appropriate amount of stack as well as instance
variables and method arguments to resume execution. The saved state of a method
execution is called an environment.

The interface between the application language and the runtime system is controlled by
code inserted by the preprocessor into the application code. This interface code calls the

10

appropriate synchronization manager services. The context's synchronization manager
performs the appropriate service and then determines whether or not to resume method
execution immediately. If method execution cannot be resumed immediately, a copy of
the environment is saved. Since an application message sent by a context can lead to a
recursive cycle of messages being established, a copy of the environment is saved when a
message is sent to another concurrent object, even if method execution is resumed
immediately.

11

SECTION 4

SYNCHRONIZATION MANAGER ENHANCEMENTS

FREEING OBJECTS DYNAMICALLY

Context objects may be freed when they are no longer needed by the application. Such
contexts can be recognized when they have finished executing or have been rolled back to
their initial state and the timestamp on their last state is earlier than GVT.

The application may call for other application objects and multifutures to be freed when
they are no longer needed by the computation just as data structures are freed in C. An
object can be safely freed when GVT is greater than the timestamp on the free message.

BALANCED TREES

We implemented balanced trees for managing the harness' association list of global
object addresses and objects. Because keeping the tree balanced is an expensive process,
it does not really speed up SaM more then a simple list implementation unless there are a
very large number of objects being managed by a harness.

MULTIFUTURES

We have implemented the sammultifuture class. In our original model, a future was
designed to hold one value-the result of a single computation. There are times when the
user may want to start a number of computations, but can use any one of the results as
soon as it is available. We can accomplish this by creating a special kind of future, a
multifuture, that is able to hold a number of values, rather than just one. Our multifutures
are similar to future-sets in ES-KIT [Chatterjee:89]. Multifutures may return the results
they hold one at a time or in groups as soon as they are available. Unlike futures,
multifutures are created and values are retrieved from them under programmer control.
They provide an explicit parallel extension of our application language, CPM.

We implemented two kinds of multifutures in the Lisp version of SaM: ordered and
unordered multifutures [Prelle:9 I]. Ordered multifutures return the results of the
computations they hold in timestamp order, thus they ensure that the computation will
produce the same results as a sequential execution of the same program. They serve to
reduce the number of futures that must be created and the amount of message traffic that
results when many futures must be resolved individually. Unordered multifutures return
the results of the computations they hold in the order they are received, which may not
correspond to timestamp order. Thus, there is no guarantee that the results of a parallel
execution will correspond to a sequential execution. In the C-based implementation of
SaM, we implemented ordered multifutures only.

13

An ordinary future may receive only one relevant (ultimately not rolled back) set-value
message. Multifutures usually receive many set-value messages. In addition,
multifutures may receive get-values and setholds messages. The setholds message
indicates how many values the multifuture will ultimately hold.

As shown in figure 4, object R creates multifuture MF. R sends messages to other
objects requesting that they send the results of their computations to MF. R's
synchronization manager keeps track of how many request messages were sent. When R
has finished sending messages using MF, R's synchronization manager sends a setholds
message to MF indicating the number of values MF will ultimately hold.

"rd" set-holds 3

"ra" :mO() F

"rb" ml [F],'rc" :m2() [MFJ

Figure 4. Multifuture Creation

R may pass the global object address of MF to other objects in the system, for example,
the objects E and F in figure 5.

14

0 \0
"re" :m3 (MF) [/

"rf" :r"4 (M4F)

000
Figure 5. Multifutures as Arguments

When A, B, and C have completed their computations, they send their results to MF in
setvalue messages, just as they would to any future (figure 6). Objects that know MF's
global object address, like E and F, may retrieve values from MF in two different ways.
If a get-values message to a multifuture has two numerical arguments, then all values
between those specified are required by the requester. For example, because the
get-values message from E has the arguments 0 and 1, E is asking MF to send its first
(the one from A) and second (the one from B) values. MF will not reply to E until both
its first and second values are available. If a get-values message to a multifuture has one
numerical argument, then the requester is asking the multifuture to send it all the
available values starting from the one specified. For example, F is asking MF to return
all values available starting with the first. MF will return all values available starting
with the first value requested. If the first value F requested is not available, MF will hold
F's request until it is.

15

"rea" getovalues 0,"1rta" replies 23, 17

"rea" replies 23,17X

"rba" set value 17
"raa" set value 2

Figure 6. Setting Multifutures and Getting Their Values

Multifutures process getvalue messages in other than strict timestamp order. We
decided to distinguish two situations: before GVT passes the timestamp on the setholds
message and after GVT passes the timestamp on the setholds message. Before GVT
passes the timestamp on the setholds message, set-value messages may be withdrawn.
This means that get-values messages may have to be rolled back and reprocessed. Table
I shows the oldstates stack of a multifuture before GVT passes the timestamp on the
setholds message. Note, the old_states is a stack, therefore, states that appear lower in
the stack were created before states that appear higher in the stack.

Table 1. Oldstates Stack of a Multifuture

Message Received Timestamp Values Holds Message Sent
"rd" set holds 3 "rd" 23 17 58 3
"reb" get values 2 2 "reb" 23 17 58 - "reb" Replies 58

"rfb" get values 2 "rfb" 23 17 58 - "rfb" Replies 58
"rca" set value 58 "rca" 23 17 58 -

"rfa" get values 0 "rfa" 23 17 - "rfa" Replies 23 17
"rea" get values 0 1 "rea" 23 17 -- "rea" Replies 23 17
"rba" set value 17 "rba" 23 17 -

"raa" set value 23 "raa" 23 --
""_ ra -

After GVT passes the timestamp on the setholds message, all setvalue messages have
been committed to, so the MF need never roll back again. get-values messages may be

16

processed in any order. If a negative get-Values message arrives, the multifuture does not
roll back, it simply withdraws the associated reply.

Table 2. Oldstates Stack of a Multifuture

Message Received Timestamp Values Holds Message Sent
"xmb" get values 2 2 "xmb" 23 17 58 3 "xmb" Replies 58
"vfa" get values 0 "vfa" 23 17 58 3 "vfa" Replies 23 17 58
"xma" get values 0 1 "xma" 23 17 58 3 "xma" Replies 23 17
"wqb" get values 0 "wqb" 23 17 58 3 "wqb" Replies 23 17 58
"rd" set-holds 3 "rd" 23 17 58 3

When a context sends a get_values message, it blocks method execution until it receives a
reply. Thus, such an object never has more than one outstanding get-values at a given
time. Therefore, the timestamp on each get-values sent by the same context will arrive
and be processed in timestamp order with respect to each other.

ASSERT METHOD

An assert method is a technique that the programmer can use to cause synchronization
barriers. The role of the assert method is much like that of a guard in Argus [Liskov:88]
or ABCL/1 [Yonezawa:87] based on communicating sequential process model described
in [Hoare:78]. Tht, programmer can place synchronization barriers in the code to prevent
the synchronization manager from spawning unnecessary parallel tasks that will be rolled
back. For any concurrent class message, the programmer can define an assert method
which returns a Boolean value indicating whether or not the message should be
processe"1, given the current values of the instance variables and arguments. The assert
method may look at instance variables and arguments to the method, but it may not cause
any futures to be resolved or send any messages to concurrent objects.

The object's synchronization manager executes the assert method before processing the
associated method. If the assert method returns TRUE, the message is processed. If the
assert method returns FALSE, the message is not processed but remains in the input queue.

GRAPHICAL FRONT-END

The graphical front end (GFE) supports application program development. The GFE
displays information about program execution as it proceeds, and can only be run on the
multicomputer simulator. There is an object status display window that shows an icon for
every time-managed object. Five kinds of objects are distinguished by differently shaped
icons: system objects (creator objects and the output object), application objects,
contexts, futures, and multifutures. In addition, futures and multifutures change shape
when they have been set. Each icon is displayed in a color that indicates the current state
of the corresponding object. These states include idle, enqueumg message, rolling back,

17

processing message, busy, ready to execute, executing, future waiting, multifuture
waiting, recursion waiting, error, and complete. A separate icon key window identifies
the significance of each icon shape and color.

We also implemented a processor utilization window, which shows, for each iteration of
the main simulation time-step loop, the fraction of maximum possible processing
(message delivery, object creation, and context execution) accomplished on each
simulated multicomputer node. The object status display and processor utilization
windows are useful for visualizing how an application's execution is proceeding and, in
particular, the degree of parallelism achieved at each step during the execution.

The user may click on an icon in the object status display window and receive
information about the icon and its corresponding object (for example, the object's name
and global address) in a message window.

SEND TO SELF OPTIMIZATION

The compiler was enhanced to optimize method invocations to "self'. Previously, a new
context was established for every method call whether or not it was a send to self.
However, since a send to self cannot cause any rollbacks to occur, it is sensible to make
send to self a special case. Therefore, instead of treating a send to self like a concurrent
class method invocation (a send request), the compiler treats this special case like a local
class method invocation (it simply calls the method instead of having the synchronization
manager intervene which would create a context and extra states). This optimization
completely eliminates the overhead of send to self that was previously incurred by
synchronization manager intervention.

GVT

We implemented a new version of the GVT calculation that avoids sending
acknowledgments based on [Bellenot:90]. The new GVT requires a three phase protocol.
First every object is told to prepare for a GVT calculation to begin. From this point on
each object keeps track of the minimal timestamp on the messages it sends. Then each
object is told to calculate OVT (Object Virtual Time). For an application object, a
creator, a future, or a multifuture, OVT is the minimum of the timestamps on the
messages in the object's input queue and the minimum timestamp of the messages it sent
since it was told to prepare for a GVT calculation. For context objects, the timestamp of
the current state is considered also if the object has not completed execution. Finally,
each object is assigned the new GVT. This protocol works properly as long as a
sufficient amount of clock time is allowed to pass between the prepare phase and the
calculate GVT phase so that all messages sent prior to the prepare phase are delivered.

In our implementation, there is a gvt-master on node zero and gvtscontrollers on all
nodes participating in the computation. The gvt-master is invoked based on the last time

18

GVT was calculated. If the last GVT computation is complete, a new GVT calculation
begins when the gvt.master sends a prepare-gvt message to each gvtscontroller. The
gvtcontrollers asynchronously notify the objects on their respective processors that they
should prepare for a GVT calculation to begin. Based on the time GVT prepare phase
began, the gvt-master is invoked to begin the actually GVT calculation phase. The
gvtmaster sends calculate-gvt messages to each gvtcontroller. The gvt_controllers
asynchronously poll the objects on their respective processors and send the minimum
timestamp calculated to the gvt~master. When all controllers have reported, the master
sends the minimum timestamp received in an assign__gvt message to each controller. The
controllers then assign the new GVT to each of the synchronization managed objects on
their processors. Each object drops states with timestamps less than the newly assigned
GVT.

19

SECTION 5

IMAGE PROCESSING APPLICATION

The image processing application we are using contains code to do three-dimensional
perspective transformation including hidden-line elimination. It is based on code found
in [Ammeral:86]. The application reads in a collection of vertices and polygons that
describe a three-dimensional image. Each vertex is a set of three real numbers that
represents the x, y, and z coordinates of a point in three-dimensional space. Each vertex
has an integer associated with it that is used to identify it uniquely. Each polygon is a list
of two or more integers (associated with vertices) representing either a simple line or the
faces of a three-dimensional solid in the image.

The application then reads in one or more sets of angles that indicate different views of
the image (view angles). Hidden-line elimination is performed by using the view angle
set to construct triangles from the polygons. Each line in the image (given by the
polygon connections) is compared to each triangle to determine if the triangle hides the
line completely, partially, or not at all. If the line is only partially hidden by a particular
triangle, the parts of the line that are not hidden are tested against other triangles
recursively. The output of the program is a set of commands that another program can
use to draw the image in two dimensions from the perspective given by the view angle
set. Each command consists of two floating point numbers and a command: an "m" for
move, a "d" for draw, or an "e" for erase the screen.

The output of the program for one view was used by another program to draw the image
shown in figure 7. The output of the program for more than one view can be used by the
other program to produce a "movie" that shows the image viewed from different angles.
Ten capital letter A's in the image gives an image with 200 vertices; eight gives an image
with 160 vertices; twelve gives an image with 240 vertices.

21

. --- i

Figure 7. Image with 200 Vertices

The code presented in Ammeral's book was not object-oriented. So our first task was to
translate it into an object-oriented form. In our first implementation, each vertex and
polygon was a concurrent object. The granularities of the computations (number of
instructions executed per communication event) were too fine compared to the overhead
incurred by communication using SaM. We modified the application to contain more
coarse-grained parallelism than was present in the first implementation. We did this by
creating big concurrent objects each of which has a copy of all the vertices and polygons
as local objects. The start object reads in all the vertices and polygons. Using this
information, it creates the big objects, one on each available processor (figure 8).

Start

B0 B1 B2 B3 B4 B5

Output

Figure 8. Perspective Transformation Control Flow

22

We tried two different implementations based on this approach. In one implementation,
each big object computes a different view of the image, that is, the start object sends each
big object a different view angle set. Using the view angle set, each big object computes
the triangles for the set of polygons and performs the hidden line computation for its own
view angle set in parallel. In this implementation, when the number of view angles
matches the number of nodes used for big objects, performance is roughly the same as
computing one view angle set when printing is suppressed (figure 9).

200 Vertices Printing Suppressed
Different Views

50 ------------------------------

40 ------------------------ /- ----
30 ---- --- ------- 4 Nodes

E30 ---------- ------- --------------- u 4Nde
S20 -7 Nodes

.10 ..-----------------------------

0 ', ', M IV I I I 0 0 ,

Number of Views

Figure 9. 200 Vertices Printing Suppressed Four and Seven Nodes Different Views

We note that an interesting phenomenon occurs in this implementation when printing is
enabled (figure 10). The figure suggests that when printing is enabled on seven nodes,
the run-time increases non-linearly with the number of views. On the other hand, in a
four node implementation, when printing is enabled the run-time appears to increase
linearly with the number of views. We will investigate this phenomenon in greater detail
in the implementation we will describe next.

23

200 Vertices Printing Enabled
Differernt Views

100 -------------------------------

P -0 -"- 4 Nodes

2 0*..............--------- --- 7 Nodes

0 0 I I 1 ' 1 1 1 1 ', - ', ',

Number of Views

Figure 10. 200 Vertices Printing Enabled Four and Seven Nodes Different Views

Although this implementation performs reasonably well when the number of views is a
multiple of the number of nodes used for big objects, some processors are idle when this
is not the case. An approach that distributes the computation more evenly among the
available processors seems more desirable.

In the approach we will consider for the remainder of this section, the start object sends
every view angle set to each big object. Using the view angle set, each big object
computes the triangles for the set of polygons. As part of the triangle computation,

potential lines to be drawn are identified and each line is associated with one of its
vertices. Each vertex is associated with an integer. Each big object checks the lines that

are associated with a subset of the vertices to determine if it is hidden or should be drawn.

So that each big object gets approximately the same amount of work to perform, the lines
to be checked by a big object Bi are those associated with the vertices vj where j modulo

the number of big objects is equal to i. Each big object functions independently from the
others. However, the output from different view angle sets must be kept in the proper
order and must not be mixed together so that they can be read by another program to form

a "movie" of the image being rotated.

We will examine how SaM executions perform against sequential executions of this

application. There are three variables of interest: number of vertices, number of views,
and number of nodes. We will examine the functional relationships among these
variables.

24

Figure 11 shows the run-time., for the sequential version of the code executed on one
S2010 node without SaM and two parallel versions using SaM on four S2010 nodes. All
the versions used three big objects. The sequential execution was performed with output
suppressed because when output was enabled an error occurred while printing floating
point numbers. We believe the cause of the difficulty was the small amount of memory
devoted to stack space (which has a fixed limit of 32K bytes) on each S2010 node. The
only sequential case where we were able to obtain output was for an image with only 40
vertices. Each of the SaM versions shown used four nodes with three big objects (3) each
placed on a different S2010 node. Printing floating point numbers was not a problem in
the SaM version. So we show the results of executing two versions: one with printing
suppressed (np) the other with printing enabled. As can be seen from the figure, as the
number of views increases the performance of both SaM versions is better than the
sequential version.

200 Vertices Sequential (3)

120-------------------------

100 --------------------------
- -- -- --- - sequential (3)

80 -------------------- np
60 -------------- -8100 ---

40 ,----------------- 4 nodes (3)

20-----

0 I I4 nodes (3)
0 6 12 1_1

Number of Views

Figure 11. Perspective Transformation 200 Vertices Sequential (3)

In the parallel execution, each big object performs the computation necessary to divide
the polygons into triangles separately to avoid communicating this information. In the
sequential execution, it is not necessary to have this computation performed more than
once. To avoid computing the triangles more than once, one big object can be used rather
than three. Figure 12 shows the run-times when only one big object is used for the
sequential execution. As can be seen from the figure, the run-time of both SaM
executions is increasing linearly as the number of views increases but at a slower rate
than the sequential execution (0.5 times the sequential rate of increase when printing is
enabled in SaM but not in the sequential version, 0.4 times the sequential rate of increase
when printing is suppressed in both).

25

200 Vertices Sequential (1)

1000
o 80-------------------------- wo ----- seunil1

60 ----------- -, n
E~~~~ 4 -O-- nodes (3)

S 20 - - -- -- -- -- -- np

0 I - 4 nodes (3)
0 6 12 __ _ _ _ _ _ _ _ _

Number of Views

Figure 12. Perspective Transformation 200 Vertices Sequential (1)

Figures 13 and 14 show similar graphs but with the number of vertices varied. As can be
seen from the figures, the run-time of both SaM executions is increasing linearly as the
number of views increases but at a slower rate than the corresponding sequential
executions.

160 Vertices

70-------------------------------___________

0)- 60-------------------------------- U sequential (1)
~50 -------------------- >.o np

40---------------'----- -----------
&# -0-- 4 nodes (3)

30--------------
~30 -- *np

~20 ------- w- W -------

S10..~-- ------------------------- 4-nodes (3)
0 I

0 6 12

Number of Views

Figure 13. Perspective Transformation 160 Vertices

26

240 Vertices

140 --------------------------

120 ---------------------- i- ----- sequential (1)

O0 10--------------------- ------- np
80 -- Ww ---- i -------------o -o4 nodes (3)

S60 ----------- -

40--------- .
- 20 --------- ----------. 4 nodes (3)

0I I
0 6 12

Number of Views

Figure 14. Perspective Transformation 240 Vertices

Figure 15 shows a comparison of the run-times when the number of vertices and the
number of views are varied. Since the image is more complex as the number of vertices
increases, the computation is more complex and the run-times increase.

4 Nodes Printing Enabled

80

S60 --------------------------- --- -20Vrie

40 -- ------ - 200 Vertices

.20 ------ --- 160 Vertices

0I I
0 6 12

Number of Views

Figure 15. Four Nodes Printing Enabled

Figures 16 through 18 show the results when printing is enabled and the number of nodes
is varied for 160, 200, and 240 vertices, respectively. In each case, the start object is
assigned to node zero. The number of big objects that are created depends on the number

27

of nodes used. With n nodes n- I big objects are created, each of which performs
approximately one n-th of the computation. The graphs show a characteristic shape
regardless of the number of vertices. Performance for twelve views is clearly best with
four nodes. As more nodes are used for the computation, performance is worse.

160 Vertices Printing Enabled

70 T --------------------------------

60 - -- - - - - - - - - - - - - - -

"50 --------------------------------- Views

o ---- 6 Views
E 30

20 •••12 Views
20 ------------ ._. ffl-l a......10 20-------------------------12-iew

100oI I I I I I I
CV U, (0 ?0 - (0 O• 0

Number of Nodes

Figure 16. 160 Vertices Printing Enabled

200 Vertices Printing Enabled

100 T ------------------------------

80 ~- -~-- -
"" -- - 1 Views

o0�.-.--6• Views
E S 40-- -- - - -- - - - - - - - - -

12 Views
S20 --------------------------------- _ _ _

01 : I I - I I I
CY3 •1 U', (0D f- (O) 0

Number of Nodes

Figure 17. 200 Vertices Printing Enabled

28

240 Vertices Printing Enabled

140

120 # -------------------------------

..100 - •---------"*u " ' 1 Views

'P -3 6 Views

S40 *-1 12 Views

20

0 I ini I I I I I
C') • I4) (0 IN- (O 0) 0

Number of Nodes

Figure 18. 240 Vertices Printing Enabled

When printing is suppressed in the application code, a different characteristic shape
results (figure 19). The graphs for 160 and 240 vertices are similar. Performance
improves as more nodes are used for the computation. The same pattern is preserved
regardless of the number of vertices used in the test.

200 Vertices Printing Suppressed

80 .o ------------------------------

U60----- -------------------------- 1 Views

40 - -------- 6 Views
201°

12 Views

0

3 4 5 6 7 8 9

Number of Nodes

Figure 19. 200 Vertices Printing Suppressed

29

An interesting phenomenon may be observed when we examine the graphs that show
how the performance varies when the number of views is varied on seven nodes. With
printing suppressed, the run-time increases linearly with the number of views regardless
of the number of vertices (figure 20).

7 Nodes Printing Suppressed

50 -----------------------------
0 4o

o •'•240 vertices
30 4-----------------------------20vrie

-0--- 200 verticesE 20 -- -- - --..-.-- -- -

160 vertices--- -- -- -- -- --

0 I I

0 6 12

Number of Views

Figure 20. Seven Nodes Printing Suppressed

When printing is enabled using four nodes, figure 11 shows run-time increased linearly
with the number of views. The same relationship holds for three nodes. However, with
seven nodes run-time does not increase linearly with the number of views, as figure 21
indicates. Similar graphs can be drawn for five, six, seven, eight, nine, and ten nodes.

30

7 Nodes Printing Enabled

100 --------------------------

- -0 240 vertices

60 ---------- #r 200 vertices

0 20 160 vertices

r,4O I I

0 6 12

Number of Views

Figure 2 1. Seven Nodes Printing Enabled

Figure 22 shows a comparison of 200 vertices with printing suppressed for four nodes
and seven nodes.

200 Vertices Printing Suppressed

50 ---------------------------

40 40----------------------- .-. 7o

0 M I I I --1
0 2 4 6 8 10 12

Number of Views

Figure 22. 200 Vertices Printing Suppressed Four and Seven Nodes

Figure 23 shows a comparison of 200 vertices with printing enabled for four nodes and
seven nodes.

31

200 Vertices Printing Enabled

80

r 60 ----------------------------

"-*
-"- 4 Nodes

4 ' 4 0
-0--- • 7 Nodes

20 - I I - - - - -

0
0 2 4 6 8 10 12

Number of Views

Figure 23. 200 Vertices Printing Enabled Four and Seven Nodes

For the remainder of this section we will explore various possible explanations for the
non-linearly increasing run-time with the number of views when printing is enabled and
more than fouir nodes are used. We will consider whether the output object could be a
bottleneck or whether printing itself could be responsible. We will explore the possibility
that more work is being done in the seven node implementation than in the four node
implementation.

For each set of views, the number of statements printed is the same whether the
application is run on four or seven nodes. Further, in SaM all output related messages are
sent to the output object on node zero, regardless of how many nodes participate in the
computation. It seems clear that the output object cannot be causing the non-linear run-
time behavior since it processes the same number of messages for a set of views
regardless of 'he number of other nodes.

We thought the cause of the non-linear behavior might be the actual printing itself. So
we modified the output object so that it processed all print messages except for the actual
printing of them. As figure 24 shows, printing in and of itself does not explain the non-
linear behavior because the characteristic shape of the graph is similar (figure 17) when
the statements are actually printed and when they are not (printing suppressed at the
output object). Similar results were obtained for both 160 and 240 vertices.

32

200 Vertices Output Object Printing

Suppressed

100 T ----------------------------------

S0....--- 6 Views

C -- •12 Views

3 4 5 6 7 8 9

Number of Nodes

Figure 24. 200 Vertices Output Object Printing Suppressed

Figure 25 compares four and seven node executions with output object printing
suppressed. We observe similar non-linear behavior as when the output object actually
performs the printing.

200 Vertices Output Object Printing
Suppressed

8 0 ---------------------------------

60 ----------------- ''----------------- ' --

AU- 4 Nodes

E ------------------------------ -------
SF 0 ,7 Nodes

~20 -- - - -- - - - - - - - -

0
0 2 4 6 8 10 12

Number of Views

Figure 25. 200 Vertices Output Object Printing Suppressed Four and Seven Nodes

33

Might it be the case that the seven node implementation is doing more work than the four
node implementation as the number of views increases? Since the application work is
fairly evenly divided among the nodes (other than node zero), the four node
implementation should do more application work per node than the seven node
implementation. Node zero does somewhat more application work in the seven node
case because it has to initiate the creation of more big objects and send more messages for
each view angle set. However, the fact that when printing is suppressed at the application
objects the run-time increases linearly with the number of views suggests that the work
on the non-zero nodes is relatively well distributed and that the impact of the extra work
performed by node zero is negligible. If the application work is evenly distributed, then
the generation of the print messages is probably relatively evenly divided among three
nodes in the four node case and among six nodes in the seven node case.

Might it be the case that the seven node implementation is doing more SaM work than the
four node implementation as the number of views increases? To investigate this
possibility, let us examine in detail the data collected during a SaM execution using four
nodes and seven nodes. As we will see, table 3 indicates that indeed this seems to be the
case. But is the amount of work increasing non-linearly with the number of view s?

Table 3. Data Collected During SaM Image Processing Runs

Nodes 4 7 4 7 4 7
Views 0 0 6 6 12 12
Vertices 200 200 200 200 200 200
Sample 1 2 3 3 2 3
Big objects 3 6 3 6 3 6
Application objects 4 7 4 7 4 7
Contexts 31 61 49 97 67 133
Futures 0 0 0 0 0 0
Multifutures 1 1 1 1 1 1
States saved 210 405 1,134 1,437 2,111 2,522
Instance variables 35 68 53 104 71 140
Environments 127 247 268 471 413 700
External messages 75 150 1,023 1,212 2,000 2,759
Internal messages 79 139 161 253 235 439

GVTs 3 3 13 12 21 39
GVT interval 1,000 1,000 1,000 1,000 1,000 1,000
Positive rollbacks 0 0 0 0 0 0
Negative rollbacks 0 0 0 0 0 0

States rolled back 0 0 0 0 0 0
Run-time (secs) 4.975 4.609 30.602 23.589 55.165 76.123

34

Before we attempt to answer that question, we need to have an understanding of what this
data represents. Nodes is the number of S2010 nodes used: one for each big object and
one for the start object. Views is the number of different view angle sets processed for the
image. Vertices is the number of vertices in the image; it provides an indication of the
complexity of the image. Sample is the test case used. Each case was run three times.
The table shows the sample test case that produced the middle run-time of the three
executions. The differences between run-times for the test cases was observed to be
negligible. Big objects is the number of big objects that are used to process a view of the
image. Each big object computes the triangles for each view set and then processes a
portion of the lines to determine whether they are hidden or partially hidden by any one
of the triangles. Application objects is the number of concurrent application objects
created dynamically during the execution of the program: one for each big object and
one for the start object. Contexts is the number of context objects created dynamically
during the program execution. It is a measure of the number of application messages
processed that are not explicitly send to self. As figure 8 indicates, each view angle set
involves processing one application message per big object. In addition, 10 messages per
big object are used to initialize each big object for an image. These messages contain the
coordinates of the vertices and descriptions of the polygons in terms of indices of their
vertices. Thus, each big object processes 10 messages for zero view angle sets, 16 for six
view angle sets, and 22 for 12 view angle sets. The start object processes one message.
Futures is the number of futures created: no futures were used in this application.
Multifutures is the number of multifutures created: one to create all the big objects.

States saved is the number of states saved by application objects, contexts, futures,
multifutures, and creators. A state contains the information needed by the
synchronization manager to control rollback. A state may contain a copy of the current
value of the instance variables for application objects or environment variables for
context objects. In the case of application objects, futures, multifutures, and creators, a
state contains an input message and the output message that was sent in response (if
appropriate). For contexts, the state may contain an input message, for example, a reply
from a future. However, contexts also save a state when a message is sent as a result of
method execution. Instance variables is the number of copies of the application instance
variables saved for each application object. Environments is the number of copies of the
application instance variables, methods local variables, and arguments saved for each
context object. A state for an application object, future, or multifuture may or may not
contain a copy of the application instance variables. For example, a future need only
have one copy of the value it has been set for. Messages that are processed to get that
value need not have individual copies of that value. A state for a context may or may not
contain a copy of the environment. For example, a state is saved each time a print
message is sent, but it is not necessary to save a copy of the environment each time
because a print message can never cause a rollback due to a recursive cycle. On the other
hand, an application request message can cause a rollback due to processing a recursive
cycle, so a copy of the environment must be saved.

35

External messages is the number of messages sent between objects on different
processors. Internal messages is the number of messages sent between objects on the
same processor. External and internal messages include application messages as well as
GVT messages, messages between application objects and contexts, and messages
between contexts and futures or multifutures. GVTs is the number of GVT computations
performed during the computation. GVT interval is the minimum amount of time that
must pass before a new GVT calculation can begin during normal computation. When
the only object that reports an OVT of less than infinity is the output object, GVT
calculations occur more frequently. The GVT interval we used for this application was a
thousand milliseconds, or one second. Positive rollbacks is the number of rollbacks that
occurred during the computation due to messages being processed out of order. Negative
rollbacks is the number of rollbacks performed as a result of negative messages received
(a negative message is a message that must be retracted because another message was
processed out of order). States rolled back is the number of states that were rolled back
during the computation. Run-time indicates the execution run-time in seconds from the
time the harness on node 0 is initialized to the time when the computation is complete,
including all output, that is, the time when GVT is determined to be infinity.

As we can see from the table, more work is being done in the seven node implementation
than in the four node implementation: more contexts are being created; more states,
instance variables, and environments are being saved; more messages are being sent, both
external and internal; and for twelve views, more GVT computations are being
performed.

We shall look at the data collected on individual nodes to see if we can narrow our
investigation further. Table 4 shows the data collected on node 1. Although the types of
data collected are similar to that shown in table 3, in table 4 they indicate the activity on
only node one.

36

Table 4. Data Collected During SaM Image Processing Runs for Node I

Nodes lof4 lof7 lof4 lof7 lof4 lof7
Views 0 0 6 6 12 12
Vertices 200 200 200 200 200 200
S le 1 2 3 3 2 3
Big objects 1 1 1 1 1 1
Application objects 1 1 1 I 1 1
Contexts 10 10 16 16 22 22
Futures 0 0 0 0 0 0
Multifutures 0 0 0 0 0 0
States saved 53 53 354 192 662 338
Instance variables 11 11 17 17 23 23
Environments 30 30 70 59 109 89
External messas_ 4 4 285 122 571 265
Internal messages 20 20 32 32 44 44
Positive rollbacks 0 0 0 0 0 0
Negative rollbacks 0 0 0 0 0 0
States rolled back 0 0 0 0 0 0

The data collected on nodes other than node zero is similar to the data collected on node
one. Clearly the execution with four nodes is doing both more SaM and more application
work than the seven node executions on nodes other than node zero.

Figures 26 through 28 show graphs that indicate that the number of states saved, number
of environments saved, and number of external messages sent (including those that cause
lines to be printed) on nodes other than node zero. As the figures show these parameters
increase linearly with both four and seven nodes. In addition, they show that in the four
node executions the amount of SaM work increases more rapidly with the number of
views than the seven node executions.

37

States Saved Node 1

800--------- -----

600-------------------------od of
z

0 c 400 ------------- ---------
0000 13no de 1 of 7

~200------- ------------

z U) 0.
0 6 12

Number of Views

Figure 26. States Saved on Node 1

Environments Saved on Node 1

0 120 -- - - - - - - - - - - -

0 80 ----------------------- odel1of 4

E -E--3 node 1 of 7

Z 0 0

0 6 12

Number of Views

Figure 27. Environments Saved on Node 1

38

External Messages Sent by Node 1

S600

00 ---------------------- odelofC .0
0.- C

00'W
CD 0 3n ode 1 of 7O Z 200

0
0 6 12

Number of Views

Figure 28. External Messages Sent by Node 1

If the nodes other than node zero are not responsible for the non-linear behavior, perhaps
node zero is responsible. Table 5 shows the same data for node zero.

Table 5. Data Collected During SaM Image Processing Runs for Node 0

Nodes 0of4 0of7 0of4 0of7 0of4 0of7
Views 0 0 6 6 12 12
Vertices 200 200 200 200 200 200
Sample 2 3 3 3 2 3
Big objects 0 0 0 0 0 0
Application objects 1 1 1 1 1 1

Contexts 1 1 1 1 1 1
Futures 0 0 0 0 0 0
Multifutures 1 1 1 1 1 I
States saved 51 87 75 129 99 171
Instance variables 2 2 2 2 2 2
Environments 37 67 61 109 85 151
External messages 63 126 171 324 261 846
Internal messages 19 19 65 61 103 175
Positive rollbacks 0 0 0 0 0 0
Negative rollbacks 0 0 0 0 0 0
States rolled back 0 0 0 0 0 0

As the table indicates, more SaM work is being done by node zero in the seven node
execution than in the four node execution. Clearly the execution with seven nodes is

39

doing both more SaM and more application work than the four node executions on node
zero.

Figures 29 through 31 show graphs that indicate that the number of states saved, number
of environments saved, and number of external messages sent on node zero increase with
both four and seven nodes. In addition, they show that in the seven node executions the
amount of SaM work increases more rapidly with the number of views than the four node
executions. We note that the number of states saved and the number of environments
saved in both the seven node and four node executions increase linearly with the number
of views. However, while in the four node execution the number of external messages
sent by node zero increases linearly with the number of views, in the seven node case the
increase is non-linear.

States Saved on Node 0

0

Zo 120 - ---- "------- node 0 of 4
0 C

•) 80 ------ node 0 of 7

EZ CO 400...... I......

0 6 12

Number of Views

Figure 29. States Saved on Node 0

40

Environments Saved on Node 0

0 1 6 0 .

> 120
00C
a- (O C node 0 of 4

Ez E o 13 nodeOof7
C40-----

0

S 0. I

0 6 12

Number of Views

Figure 30. Environments Saved on Node 0

External Messages Sent by Node 0

1000---------------------
S 800 ---------------------- .

Cn
X 0 o 60 - m" nocde 0 of 4

0
CO •o 400 ------ ----- 1 node 0 of 7

E = 200

0 6 12

Number of Views

Figure 31. External Messages Sent by Node 0

We now turn our attention to the cause of these additional messages sent by node zero. It
is true that in the seven node executions node zero sends more application messages to
initiate the creation of more big objects and to send each big object the view angle sets.
In this application, the number of contexts created is the same as the number of
application messages sent by node zero. (In other applications we shall consider in this
paper, this will not be the case.) As figure 32 indicates, the number of application
messages sent by node zero increases more rapidly with the number of views in the seven

41

node execution than in the four node execution. However, the increase is linear. The
number of messages sent by node zero to create the big objects on other nodes, although
larger in the case of seven nodes (six as opposed to three), is independent of the number
of views.

Application Messages Sent by Node 0
(Contexts)

160

Se• 120 ------ ---- ---- ---0 '

0-*-4 NodesS80 -----. .---------------.E• .8 7u • 0•O -Nodes

0I I

0 6 12

Number of Views

Figure 32. Application Messages Sent by Node 0

Where are the additional external messages coming from? In addition to the start object
and the output object, the GVT master is also located on node zero. GVT computations
are basically performed according to the real-time clock. Since the run-time in the seven
node executions increases non-linearly with the number of views, the number of GVT
computations performed increases non-linearly with the number of views as figure 33
indicates.

42

GVT Calculations Printing Enabled

40 -----------------------------

> 30 - - - - - - -- - - - - - -40

20 . 0------------------------ -- __--____- ;--4 Nodes

E ----- 20 --...• ;,.---'--
= 10 ---------- 7-ode

ic. 1:0--------------------~---Nde
0

C0 04 (0 €O 0 COJ

Number of Views

Figure 33. GVT Calculations Printing Enabled

In the seven node implementations, each GVT calculation involves node zero sending six
external messages to tell the other nodes to prepare for a GVT calculation, six external
messages to tell the other nodes to perform an OVT calculation, and six external
messages to tell the other nodes the new GVT assignment. Further, node zero performs
more work to accomplish a GVT calculation with seven nodes as it must process six
messages to determine the new GVT value. Since the number of GVTs is proportional to
run-time, however, what we are seeing here is an effect, not a cause, of the non-linear
behavior.

Since we could not identify how SaM might be responsible for this non-linear behavior,
we began to look elsewhere for an explanation. The Symult S2010 is a mesh
architecture. Messages in the four node executions have less far to travel to reach node
zero on average and are less likely to encounter contention than messages in the seven
node executions. To investigate the possibility that message contention could be
responsible for the non-linear behavior, we wrote a small program that initiates a simple
computation on a number of nodes-SaM is not used. The computation involves each
node, other than node zero, preparing a number of messages of the same type as those
sent by the big objects to node zero. These messages are short, less than 100 bytes.
When node zero receives these messages, it prints their contents. Figures 34 and 35 show
the results of this experiment. In figure 34, each plotted point indicates the average run-
times of one hundred executions of the same program. In figure 35 each plotted point
indicates the difference of the maximum and minimum run-times observed during these
tests.

43

Average Message-Passing Test Results

.- 00 25 ---------------------------------- mlm

20 -

0- 4 nodes

_ 7 nodes
I.. 1

0

200 600 1000 1400 1800 2200 2600 3000

Number of Messages

Figure 34. Send Messages and Print Only

Range of Message-Passing Test Results

25 ----------------------------------

E

r 15 -------------- ------- 4 nodes

0 .00,

0 E.0-1 7 nodes

200 600 1000 1400 1800 2200 2600 3000

Number of Messages

Figure 35. Send Messages and Print Run-Time Ranges

44

We can see that larger number of messages make an execution more unstable with respect
to run-time, but we see no significant distinction between our four node results and our
seven node results. At this point we are unable to identify the cause of the non-linear
behavior.

45

SECTION 6

NEURAL NETWORK APPLICATION

We implemented an initial prototype of a neural network training application that
employs a modified version of the backpropagation algorithm found in [McClelland:88].
The program reads backpropagation control parameters and the network description from
files. Each network has three or more layers: one input layer, one or more hidden layers,
and one output layer. The units in each layer are fully connected to the units in the next
layer (connections do not skip between layers). Each input connection has an associated
weight that represents that connection's contribution to the activation value of the unit to
which it is connected. Figure 36 shows a network that can identify whether a six-bit
pattern is symmetric or not. An input consists of six-bits, for example, 010011 or
010010, and a one-bit output 0 for false and 1 for true.

Input

Hidden 1

Forward Backward

Hidden 2

Output

Figure 36. Neural Network for Symmetry

The backpropagation algorithm consists of computing the output values of the network
(forward propagation), computing errors based on the difference between the target and
actual output values, then backpropagating thesc error terms through the network in order
to change the weights at each unit connection. The activation value of each unit is (some
function of) the weighted sum of all its input connections.

The basic modification made to the backpropagation algorithm changed the control flow
in order to make the algorithm more amenable to parallelization. The original algorithm
performs the steps mentioned above in an inherently sequential fashion. In the modified
algorithm, each unit expects a known number of activation values from all its input

47

connections. The unit acts like a collector, calculating its activation value incrementally
based on input it receives from its connections. When the unit has received an activation
value from all its input connections, it can calculate its own activation value and pass that
value to the units connected to its output connections. Thus, activation values are
transmitted from the input layer, to the hidden unit layer, then to the outputs where the
error term can be calculated. The units also act as collectors for calculating and
backpropagating the error term for altering the weights on each connection.

A training cycle consists of calculating activation values and backpropagating the error
for all input patterns. This training cycle represents one epoch. Backpropagation is
performed for a maximum number of epochs or may stop before the maximum number of
epochs is reached if the error at the output units for all patterns becomes small enough.

In our original implementation, each unit was a concurrent object. The granularities of
the computations (number of instructions executed per communication event) were too
fine compared to the overhead incurred by communication using SaM. We modified the
neural network application to contain more coarse-grained parallelism than was present in
the first implementation. We used a technique for parallelizing neural network
simulations found in [Pomerleau:88]. Instead of representing individual units in a single
network as concurrent objects, this implementation replicates the network and divides the
training patterns evenly among the resulting networks. These networks are the objects
that execute in parallel and provide for more coarse grained parallelism. Our algorithm is
very similar to the one presented in the paper; however, our algorithm is more generic
while theirs was more tailored to the parallel machine on which it was implemented, the
Carnegie Mellon University Warp, a ten processor, programmable systolic-array
computer.

The multiple network model must be trained somewhat differently than the single
network model. In the single network simulation, the network calculates the output for
all patterns, and subsequently calculates the error signal which it back propagates through
the network changing the input weights at each layer.

In the multiple network model, each network calculates the outputs for its own set of
patterns, back propagates the error, and determines what the weight change would be, but
does not update the weights as yet. Before continuing to the next epoch, each network
sends their respective weight changes to a controller, called a weight-summer, that sums
all the weight changes and broadcasts to all networks the new weight values for all of the
input weights to each layer. The start object controls the overall training. It tells each
network when to begin a new training epoch. It queries the weight summer to determine
if training is complete at the conclusion of each epoch. Figure 37 shows the control flow
for one epoch. The N's are the networks; WS is the Weight Summer. The arrow from
WS to the start object is the reply that indicates whether training should continue.

48

Start

No N1 N2 N3 WS

No N1 N2 N3

Figure 37. Neural Network Application Control Flow

There are obvious data dependencies between epochs, since updating the weights in a
previous epoch affects the activation values calculated in the next epoch. Although SaM
handles data dependencies correctly, it may do so by unnecessary roll back. Since the
behavior of the backpropagation algorithm is well understood, we can place a
synchronization barrier in the code to prevent the synchronization manager from
spawning unnecessary parallel tasks that will be rolled back. A synchronization barrier is
quite simple to add to the application code. We use a similar construct to an assert in the
Lisp language that functions in a manner similar to a guard in the communicating
sequential process model [Hoare:781.

The start object sends messages to the networks and the weight-summer in rapid
succession. As the computation performed by the networks is relatively substantial, the
weight-summer might receive and process the message from the start object before it has
received all the messages from the networks. The weight-summer should not process the
message from the start object until it has processed a message from each network. If the
weight-summer processed this message, it would have to be rolled back when the
network messages came in. Further, the start object might start a new training epoch at
each network before weights had been updated by the weight-summer causing
unnecessary rollbacks for the networks. Placing an assert on the message from the start
object to the weight-summer that tests that the value of the weight-summer's instance
variable inputReceived is equal to the number of networks before the message from the
start object is processed ensures that this message will not be processed until all the
messages from the networks have been received and processed (figure 38). When the
message from the start message is processed, inputReceived is set to zero.

49

Start

WS No N1 N2 N3

Figure 38. Neural Network Application Control Flow with Assert

We captured a number of parameters from the execution of training a network to identify
whether a seven-bit pattern is symmetric or not. These are presented in table 6.

Table 6. Data Collected During a Training Session

Epochs 1,074

Hiddens 9

Patterns 128

Nets 4

Nodes 6
Application objects 6
Contexts 14,006

Futures 1

Multifutures 1,075

States saved 92,635
Instance variables 14,002

Environments 59,223
External messages 23,919

Internal messages 34,107
GVTs 442
GVT interval 1,000

Positive rollbacks 11

Negative rollbacks 8
States rolled back 36

Run-time (secs) 890.99

Epochs is the number of epochs required to train the network. Hiddens is the number of

hidden units. Patterns is the number of input patterns. Nets is the number of networks

among which the patterns are divided: each network is assigned 32 of the 128 patterns.

50

Nodes is the number of S2010 nodes used in the training: one for each net, one for the
start object and one for the weight-summer. Application objects is the number of

concurrent application objects created dynamically during the execution of the program:
one for each net, one for the start object and one for the weight-summer. Contexts is the
number of context objects created dynamically during the program execution. It is a
measure of the number of application messages processed that are not explicitly send to
self. As figure 38 shows, each epoch involves processing 13 application messages. Since
there are 1074 epochs, this accounts for 13,962 contexts. Application messages to
initialize the networks and the weight-summer and messages processed out of order that
result in contexts created unnecessarily account for the other 44 contexts created. Futures

is the number of futures created: one to create the weight-summer. Multifutures is the
number of multifutures created: one to create the networks and one for each epoch.
States saved is the number of states saved by application objects, contexts, futures,
multifutures, and creators. Instance variables is the number of copies of the application
instance variables saved for each application object. Environments is the number of
copies of the application instance variables saved for each context object. An
environment contains values of the application instance variables, the methods local
variables and arguments.

External messages is the number of messages sent between objects on different
processors. Internal messages is the number of messages sent between objects on the
same processor. External and internal messages include application messages as well as
GVT messages, messages between application objects and contexts, and messages
between contexts and futures or multifutures. GVTs is the number of GVT computations
performed during the computation. Positive rollbacks is the number of rollbacks that
occurred during the computation due to messages being processed out of order. Negative
rollbacks is the number of rollbacks performed as a result of negative messages received
(a negative message is a message that must be retracted because another message was
processed out of order). States rolled back is the number of states that were rolled back
during the computation. Run-time indicates the execution run-time in seconds from the
time the harness on node zero is initialized to the time when the computation is complete,
including all output, that is when GVT is determined to be infinity.

Figure 39 shows the results of varying the number of networks in both the sequential and
the SaM implementations. In the SaM implementations, since each network was
assigned to a different node, the number of nodes were varied also. We were not able to
obtain data for the two network (four node) case. We believe this was because of a lack
of adequate application memory and/or stack space on the S2010 nodes.

51

Vary Number of Nets (Nodes)
(Epochs 1047 Patterns 128 Hiddens 9)

1,400 1,265 1,280 1,319

1,200

1,000 2 Nets (4 Nodes)

_* 04 Nets (6 Nodes)
E~ 600
S400 E8 Nets (10 Nodes)

•" 200

0
sequential SaM

Figure 39. Vary Number of Nets

Figure 40 shows the results of the SaM and sequential executions when the number of
patterns is varied. Five-bit symmetry has 32 patterns associated with it; six-bit has 64
patterns; seven-bit has 128 patterns. Five-bit symmetry trains in 189 epochs; six-bit
symmetry trains in 431 epochs; seven-bit symmetry trains in 1074 epochs. As can be
seen in the figure, the SaM execution performs better than the sequential execution for 64
and 128 patterns. Further, the run-time of the SaM execution is increasing linearly as the
number of patterns increases but at a slower rate than the sequential execution (0.4 times
the sequential rate of increase when printing is enabled in SaM but not in the sequential
version). This is not surprising, since increasing the number of patterns increases the
amount of computation that must be performed per epoch.

52

Vary Number of Patterns
(Epochs 189 Hiddens 9)

250 -------------------------------

' 200- - - - - -

E
- -----

50 I-----------------

*
0)

32 64 96 128

Number of Patterns

Figure 40. Vary Number of Patterns

Figure 41 shows the results of the SaM and sequential executions when the number of

hidden units is varied. As can be seen in the figure, the SaM execution performs better
than the sequential execution for six and nine hidden units. Further, the run-time of the
SaM execution is increasing linearly as the number of hidden units used increases but at a
slower rate than the sequential execution (0.4 times the sequential rate of increase when
printing is enabled in SaM but not in the sequential version). This is not surprising, since
increasing the number of hidden units increases the amount of computation that must be
performed per epoch.

53

Vary Number of Hiddens
(Epochs 431 Patterns 128)

6500-- --- -
5, 00 -------- -------- -------- ;a" -

4300-------------------'"• " "--- ------- sequential
3200 ---- -6 nodes

3 6 9

Number of Hiddens

Figure 41. Vary Number of Hidden Units

Figure 42 shows the results of the SaM and sequential executions when the number of
epochs are varied for the seven-bit symmetry case. As can be seen in the figure, the SaM
execution performs better than the sequential execution as the number epochs increases.
Further, the run-time of the SaM execution is increasing linearly as the number of epochs
increases but at a slower rate than the sequential execution (0.7 times the sequential rate
of increase when printing is enabled in SaM but not in the sequential version). This result
was most gratifying because it suggests the viability of the SaM approach given the
proper granularity of the computation and sufficient memory available on each
multicomputer node.

54

Vary Number of Epochs

(Patterns 128 Hiddens 9)

1500 -----------------------------12 , 0 0 --- --------------------. " : - ----'

S900 -----..--- ••-..--- --"- -sequential

E
-6---- 6 nodesS300 ---- --- ---- ---

M '--- -

0 200 400 600 800 1000 1200

Number of Epochs

Figure 42. Vary Number of Epochs

55

SECTION 7

TRACKER APPLICATION

We implemented a concurrent version of a multitarget tracking application we obtained
from the California Institute of Technology. The original tracker code, which is written
in C, is available by anonymous ftp from ccsf.caltech.edu and can be found in the
citlib/code/benchmarks directory. A more detailed discussion of the tracking algorithms
embodied by this code can be found in [Gottschalk:88].

The tracker application's input consists of a series of sensor report datasets. Each dataset
is a collection of (x,z) coordinates that identify the locations of targets as seen by a sensor
on its 2-dimensional focal plane. Sensor reports are generated from an input file that
specifies the number and locations of launch sites and, for each site, the number and
launch parameters of boosters originating at the site. The application uses a simple
powered flight model to generate sensor reports every five seconds of simulated time. As
each new set of sensor reports is available, the application performs the following:

1. Previously recognized tracks are extended by identifying new sensor reports that
fall within a given range of the next predicted position along each track. When
more than one sensor report is sufficiently close to the predicted position, a track
is split into multiple tracks, each ending at a different sensor report.

2. New tracks are initiated by looking at all possible combinations of current sensor
reports that are not associated with established tracks and sensor reports from the
previous two datasets.

When a new track is initiated or an existing track is split, a new entry is placed in the
trackfile, which is an array of track re;ýords, each 340 bytes in length. The performance
of the algorithm employed by the tracker application with respect to accuracy is
documented in [Gottschalk:88]; we are only concerned here with the performance of our
concurrent implementation with respect to execution time.

Since individual tracks can be processed independently from each other, we decided to
create a number of tracker objects, each with its own track file and each responsible for
processing a subset of all of the tracks recognized at any point during an execution. In all
of our concurrent tracker implementations, the start object generates and sends each set of
sensor reports to each of n tracker objects (see figure 43).

57

Start

To T, T2 T3

Start

Figure 43. Initial Tracker Application Control Flow

In all of our implementations, tracker object i is responsible for all of the recognized
tracks that currently end on a sensor report whose index in the sensor report array is i
modulo the number of tracker objects. For the purpose of initiating new tracks, each
tracker object saves two complete sets of previous sensor reports. While initiating new
tracks, however, tracker object i only considers sensor reports whose index in the current
sensor report array is i mod n. Thus, new tracks are initiated on the tracker objects that
are responsible for them.

For the purpose of extending and splitting existing tracks, each tracker object must
consider all of the sensor reports in the current dataset. Thus, the responsibility for a
given track that ended on sensor report i in the previous dataset moves from tracker
object i to tracker object j when the track is extended or split so that it ends on sensor
report j in the current dataset. In this case, the track record for this track must be
transferred to tracker object j before the next set of sensor reports is processed.

The significant difference between each of our implementations of the tracker application
is how this transfer of track records is accomplished. Our initial implementation was the
simplest and most straightforward. Subsequent implementations were necessary because
of the limited memory available on each node of the Symult S2010 on which we ran our
applications.

In our initial implementation (figure 43), each tracker object replies to the message from
the start object that contains a new sensor report dataset. Each tracker object uses the
data it receives from the start object to extend, split, and initiate tracks. Then it replies to
the start object with an array of track records for tracks that are another tracker object's
responsibility for the next simulation step. The start object has a relocation track file for
each tracker object and, when it receives each reply, it copies each track record in the
reply to the relocation track file for the tracker object that is responsible for the track.
When all replies have been received, the start object generates the next set of sensor
reports and sends the new dataset to each tracker object, along with the relocation track

58

file for that tracker object. Before processing the new dataset, each tracker adds the track
records it receives from the start object to its track file.

Our original implementation has a simple, straightforward design that minimizes the
number of messages that are sent between objects and incorporates a natural mechanism
for keeping the start object from racing ahead of the tracker objects. Without such a
mechanism, the start object would generate all of the datasets for the entire execution,
flooding the network with messages for tracker objects and opening the door for large
numbers of rollbacks without some mechanism in place to keep tracker objects from
proceeding to a new simulation step before all track relocations were complete for the
current step.

By creating one fewer tracker objects than the number of Symult S2010 nodes running
the application, each node hosts one application object (the remaining node hosts the start
object). This accomplishes two things: it maximizes the granularity of the application,
and all application objects can be processing messages concurrently.

The main disadvantage of our first implementation is that the start object is sufficiently
large and requires sufficiently many states to be saved that it runs out of memory, even
though it is the only application object on its S2010 node. The start object's size is so
large because of its relocation track files, one for each tracker object and each large
enough to hold the greatest number of track records that are relocated to any tracker
object during an execution. For example, with 8 tracker objects and 145 threats, the
greatest number of track records relocated to any tracker object is 38. In this case, the
start object must maintain 8 relocation track arrays, each capable of holding 38, 340-byte
track records. This adds over 100 KB to the start object's state, more than doubling its
size. At the same time, the fact that the start object receives messages from all tracker
objects means that additional copies of its enlarged state are saved. The limited, 8-MB
memory of a S2010 node is insufficient to support this implementation with 8 tracker
objects and large enough track files to handle even 45 threats.

Our second implementation was designed to reduce the size of, and the number of
messages received by, the start object. In this implementation, each tracker object sends
the track records that must be relocated to a new relocator object ("R" in figure 44). The
relocator's entire state consists of one relocation track file for each tracker object and a
counter the relocator uses to keep track of whether it has heard from all tracker objects
during the current simulation step. Because the relocator must know when it has received
all of the tracks that must be redistributed for the next simulation step, every tracker
object must send it a message, even if the track object has no track records to give it.

59

Start

TO T, T2 T

RTo T2 T3

Figure 44. Tracker Application Control Flow With Relocator Object

After sending a new sensor report dataset to each tracker object, the start object sends a
redistribute message to the relocator. The relocator's redistribute method has an assert
that keeps the relocator from processing the redistribute message until its counter instance
variable indicates that it has received all of the track records to be redistributed for the
next simulation step. Once the relocator has heard from all tracker objects (including
those with no track records to give it), it processes the redistribute message. This causes
it to send the contents of its relocation track files to the corresponding tracker objects and
reply to the start object. When the start object receives this reply, it begins the next
simulation step.

This implementation moves the relocation track files and the messages sent to their
location by the tracker objects from the start object to the relocator object. We found that
this was still not enough to enable us to run with 8 tracker objects and only 45 threats.
This time, the S2010 node on which the relocator object is the sole application object
runs out of memory. The obvious solution is to separate the relocation track files into one
object that accumulates tracks for each tracker object (see figure 45).

To T, T2 T3 A0 A1 A2 A3

A0 A1 A2 A3 To T, T2

Figure 45. Tracker Application Control Flow With Accumulator Objects

60

In this implementation, each tracker object has a corresponding accumulator object, and
each tracker object sends track records directly to the appropriate accumulator objects. It
is natural to ask at this point, if not previously, why tracker objects do not send track
records directly to other tracker objects. The reason is that tracker objects are by far the
largest objects. This means that if memory is tight, they should receive as few messages
as possible, so that as few states as possible are saved. Accumulator objects, on the other
hand, are relatively small objects, since each needs only a single relocation track file.
While the number of messages that each accumulator may receive during a simulation
step increases in proportion to the number of tracker objects, the required size of each
accumulator's relocation track file decreases accordingly. Thus, this is a more scalable
solution to the track relocation problem.

The start object waits for a reply from every tracker object before sending a redistribute
message to all accumulator objects. When an accumulator object receives a redistribute
message, it sends the contents of its relocation track file to its tracker object. Then it
empties its relocation track file in preparation for the next simulation step and sends a
reply to the start object. The start object waits for a reply from every accumulator object
before beginning the next simulation step. Although the relocation track files have been
removed from the start object in this implementation, the start object once again receives
too many messages and its S2010 node runs out of memory.

This problem could be resolved by requiring every tracker object to send a message to
every accumulator, even if the tracker has no track records for the accumulator. This
would permit a solution similar to the previous implementation with an assert defined for
the accumulator's redistribute method. In this case, the start object would not need to
receive replies from tracker objects; it would still need to receive a reply from every
accumulator, however.

The way we solved this problem in our final implementation was by inserting a controller
object ("C" in figure 46) between the start object and the other objects in the application.
The controller object has no instance variables; it only serves as a fanout for messages
from the start object and a fanin for replies. We can run our largest scenario, which
consists of 13 tracker objects and 145 threats, using this implementation. With 13
trackers, 13 accumulators, one controller, and one start object, we can place one
application object on each of the 28 nodes in our Symult S2010. The 145 threats
represent essentially the entire threat data file obtained from Caltech. (We tried running
with additional trackers by locating corresponding trackers and accumulators on the same
node, which might be desirable if memory were not an issue. Unfortunately, the S2010's
limited memory cannot support this mode of operation.)

61

Start Start

o m2 3 Ao A A2 A3

A0 A1 A2 A3

Figure 46. Final Tracker Application Control Flow

We ran our final implementation in three configurations: 13 trackers, 8 trackers, and
sequential. The 13-tracker configuration ran on 28 Symult nodes, placing one application
object (13 trackers, 13 accumulators, 1 start object, and 1 controller) on each node and
using SaM for synchronization. Data was gathered from 13-tracker executions with
threat scenarios consisting of 25, 45, 65, 85, 105, 125, and 145 threats. The 8-tracker
configuration ran on 18 Symult nodes, again placing one application object on each node
and using SaM for synchronization. Data was gathered from 8-tracker executions with
threat scenarios consisting of 25, 45, 65, 85, and 105 threats. The sequential
configuration ran on I Symult node and did not use SaM for synchronization. Data was
gathered from sequential executions with threat scenarios consisting of 25, 45, 65, 85,
105, 125, and 145 threats.

The number of threats that we can process with our concurrent implementation is limited
by the memory size of our Symult nodes and the rate at which GVT computation can be
performed. The largest objects in our final implementation are the tracker objects. A
tracker's instance variables include over 90 KB of tables, filters, and other data that is
used to store and process sensor report datasets. In addition to these instance variables
there is the track file itself, which must be large enough to store as many 340-byte track
records as necessary at any point during an execution.

The minimum track file size depends on the number of tracker objects as well as the
number of threats. With our 145-threat scenario and 13 trackers, track files must be large
enough to store 99 track records. (Even though each tracker eventually ends up with only
11 or 12 track records in its track file, there are as many as 99 provisional tracks that
must be stored in a single tracker's track file before they become disambiguated.) This
makes the minimum size of tracker objects approximately 131 KB in a 13-tracker
configuration capable of processing up to 145 threats. With only 8 trackers, our
145-threat scenario requires that track files be large enough to store 149 track records.

62

Thus, the minimum size of tracker objects is approximately 148 KB in an 8-tracker
configuration capable of processing up to 145 threats.

This difference of 17 KB in the size of tracker objects is why we cannot run an 8-tracker
configuration with 145 threats. When we do, execution proceeds I or 2 simulation steps
and then we receive error messages from every tracker's node reporting that it has
insufficient memory to create another copy of its tracker object's state.

We also received these messages when we first tried to run a 13-tracker configuration.
We solved the problem in this case by increasing the rate at which GVT computations are
performed. The gvt-master on node 0 waits at least GVTInterval before beginning a
new GVT computation. The value of GVTInterval we were using was
1000 milliseconds. This is the same value that we used for all executions of the image
processing and neural net applications discussed above. For our 13-tracker configuration,
however, a GVTInterval of 1000 milliseconds does not result in memory being
recovered sufficiently fast to permit new tracker states to be created as quickly as
necessary for the execution to continue. By decreasing GVTInterval to
300 milliseconds, however, we can run the 13-tracker configuration with 145 threats.

When we subsequently saw the 8-tracker configuration run out of memory, we proceeded
to lower the value of GVT_Interval even further. At values below 50 milliseconds,
however, the algorithm we use to compute GVT fails. Recall from our earlier discussion
of GVT that the 3-phase algorithm we use works properly as long as the first phase is
long enough for all messages that are in transit when it begins to be delivered before it
ends. This condition is not satisfied with a value of less than 50 milliseconds for
GVTInterval. At a GVTInterval of precisely 50 milliseconds, tracker states are still too
large at 148 KB. We have to reduce the maximum number of threats to 105 to produce
an 8-tracker configuration that does not run out of memory. With 105 threats, the
8-tracker configuration requires track files large enough to store 122 track records, which
makes the minimum size of tracker objects approximately 136 KB.

Many GVT computations are performed with GVTInterval set to 50 milliseconds.
Table 7 shows some of the interesting data gathered during an 8-tracker execution with
105 threats. We can see that 258 GVT computations were completed during this
154-second execution. Each GVT computation involves 4 sets of messages sent between
the gvtmaster on node 0 and the gvtscoordinators on the other 17 nodes, or 68 messages
total. This means that the 253 GVT computations performed during this execution
account for 17,544 of the 22,340 external messages shown in table 7. In other words,
GVT computation was responsible for over 78 percent of the messages between
processors during this execution.

63

Table 7. Data Collected During an 8-Tracker Run With 105 Threats
Application objects 18

Contexts 1,815
Futures 132
Multifutures 115
States saved 16,050
Instance variables saved 1,811
Environments saved 8,804
External messages 22,340
Internal messages 5,623
GVTs 258
Positive rollbacks 253
Negative rollbacks 118
States rolled back 801
Run time (seconds) 153.944

GVT computation accounts for most interprocessor message traffic even in 13-tracker
executions with a GVTInterval of 300 milliseconds. Table 8 shows data gathered
during a 13-tracker execution with 145 threats. The 13,716 external messages required to
perform 127 GVT computations account for over 65 percent of the messages between
processors during this execution.

Table 8. Data Collected During a 13-Tracker Run With 145 Threats

Application objects 28

Contexts 2,774
Futures 142
Multifutures 115
States saved 24,247
Instance variables saved 2,751
Environments saved 13,186
External messages 21,009
Internal messages 7,187
GVTs 127
Positive rollbacks 455
Negative rollbacks 193

States rolled back 1,704
Run time (seconds) 184.664

This application was also subject to the effects of printing discussed above with respect to
the image processing application. Figure 47 shows the run times of our 13-tracker,

64

8-tracker, and sequential configurations as a function of threat size. This data was taken
with printing enabled. With printing enabled, the start object directs all trackers to print
the contents of their track files after the final simulation step has been completed. It is
not clear from this figure whether an 8- or 13-tracker configuration would perform better
than a sequential execution with additional threats. Unfortunately, we cannot perform the
requisite measurements on the Symult S2010.

200
180 ------------------------------
160o --------- ---------- ---------• . .

140 -1---sequential
9 12080'- •- ='=-------

iFA --------------------------- O---- 3- 13 trackers- 3 ;_I ------- ---- --- ----.. - - -- ,a os
E 60 -----------' -'-}--"-"'" - *- 8 trackers

CC 40 .- r ',e

0 t ----- ----- o -----------
25 45 65 85 105 125 145

Number of Threats

Figure 47. Tracker Application Run Times With Printing

Figure 48 shows the corresponding run times when printing is disabled. From this figure,

it appears that our 8-tracker configuration would perform better than a sequential
execution if it could handle more than 105 threats, our 13-tracker configuration does

perform better than a sequential execution with more than 125 threats, and our 13-tracker
configuration might perform better than our 8-tracker configuration if it could handle
additional threats.

65

200 ---------------------------------------
180

- " 160 ---------------------------------------
140 ------------------------------ - sequential

120
100 ----- ------------------- - O13 trackers

i1=
- 60 ----- -------------------------- * -. 8 trackers

a: 40 - - - - - - - - - - - - - - - -

0 .. S I S . I I

25 45 65 85 105 125 145

Number of Threats

Figure 48. Tracker Application Run Times Without Printing

The nonlinear effects of printing as observed above with respect to the image processing
application seem to be present here as well. Figure 49 shows the difference in run times
between runs in which printing was enabled and disabled. Although the number of lines
printed during tracker runs is well below the levels at which the nonlinear effects of
printing become pronounced, this figure does appear to suggest a nonlinear increase in
run time as the 8-tracker configuration goes from printing 89 lines (at 25 threats) to
printing 169 lines (at 105 threats) and the 13-tracker configuration goes from printing 129
lines (at 25 threats) to printing 249 lines (at 145 threats).

-• 40

20

25 - -8 trackers

25 45 65 85 105 125 145

Number of Threats

Figure 49. Run-Time Difference Between Printing and Nonprinting Runs

66

SECTION 8

CONCLUDING REMARKS

In this paper, we briefly described the synchronization manager as well as the
enhancements made to SaM and CPM this year to improve performance and provide
language constructs to allow the application program developer to control
synchronization directly. Performance improvements included a new method for
performing Global Virtual Time (GVT) calculations and a new method for handling send-
to-self method invocations. New parallel language constructs included assert statements
and statements for manipulating multifutures. We also described our experience using
SaM to run several application programs written in CPM on a Symult S2010
multicomputer. The applications we developed and tested included image perspective
transformation, neural network training, and multiple target tracking.

In the image processing application section, we described alternative implementations of
a perspective transformation application. We observed that for an image that contains
200 vertices, the run-time of the application using SaM on four S2010 nodes performed
better than the same application without SaM, run sequentially on one S2010 when more
than one view is computed. Furthermore, the run-time of the SaM execution increased
linearly with the number of views computed but at a slower rate than the run-time of the
sequential execution (roughly half the rate). When printing was suppressed, we observed
that performance generally improved when more nodes were used for the computation
and that run-time increased linearly with the number of views computed. When printing
was enabled on three or four nodes, the run-time also increased linearly with the number
of views computed. However, the performance was generally worse when more nodes
were used and run-time increased non-linearly with the number of views.

We explored various explanations for this phenomena. We showed that the output object
is not a bottleneck. We showed that the actual printing itself is not responsible. We
looked in detail at various parameters collected during executions of the application on
four nodes and seven nodes, to try to determine if the seven-node implementation is
doing more work than the four-node implementation as the number of views increases
when printing is enabled. On nodes other than zero, both more application work and
more SaM work is being done in the four-node executions. On node zero, although more
work is being done in the seven-node implementation, the amount of work performed
increases linearly with the number of views computed, except for the number of external
messages sent by node zero. The cause of these additional external messages is that
additional GVT computations are being performed because the program is running longer
in the seven-node implementation. At this point we are unable to identify the cause of the
non-linear behavior.

67

In the neural network application section, we described alternative implementations for
training a neural network. The SaM execution is slower than the sequential execution
when the training set consists of 32 patterns, but faster for 64 or 128 patterns. (These
tests were run with nine hidden units for 189 epochs.) The SaM execution is slower than
the sequential execution when three hidden units are used, but faster when six or nine
hidden units are used. (These tests were run with 128 patterns for 431 epochs.) The SaM
execution is faster than the sequential execution when the number of epochs is 189, 431,
1074. (These tests were run with 128 patterns and nine hidden units.) Further, the run-
time of the SaM execution increases linearly with the number of patterns, hidden units,
and epochs but at a slower rate than the sequential execution (0.4, 0.4, and 0.7 times the
sequential rate of increase, respectively, when printing is enabled in SaM but not in the
sequential version).

In the tracker application section, we described a series of alternative implementations for
multiple target tracking that was driven by a need to reduce application memory
requirements to accommodate the limited memory on Symult S2010 nodes. We were
able to reduce memory requirements sufficiently in our final implementation to be able to
track up to 105 targets with 8 tracker objects and up to 145 targets with 13 tracker
objects. With printing enabled, neither configuration performed better than a sequential
execution, and it was unclear whether either would do so at higher numbers of threats.
With printing disabled, however, both of the parallel configurations performed better than
a sequential execution, given a sufficient number of threats.

The lack of sufficient memory available on each S2010 node to support application
program and data has severely restricted our ability to test SaM on really large versions of
our applications. However, in spite of the challenges presented by the S2010 as a
multicomputer platform in general and in particular as a platform to support SaM, we
believe we have been able to show the correctness and viability of our basic approach.

68

LIST OF REFERENCES

[Agha:86] Agha, G. A., ACTORS: A Model of Concurrent Computation in Distributed
Systems, Cambridge, MA: MIT Press, 1986.

[Ammeral:861 Ammeral, L. Programming Principles in Computer Graphics, John Wiley
& Sons, New York, N. Y., 1986.

[Bellenot:90] Bellenot, S., "Global Virtual Time Algorithms," Proceedings of the 1990
SCS Conference on Distributed Simulation, Vol. 22, No. 2, Society for Computer
Simulation, San Diego, January, 1990.

[Brando:92] T. J. Brando, and M. J. Prelle, "Fault-Tolerant Synchronization
Management for concurrent Object-Oriented Computation," MTR 92B0000048,
The MITRE Corporation, March 1992.

[Bridgland:91] Bridgland, M. F., J. I. Leivent, and R. J. Watro, "Mathematical
Foundations for Time Warp Systems," MTR 10959, The MITRE Corporation,
January 1991.

[Chatterjee:89] Chatterjee, A., "Futures: A Mechanism For Concurrency Among
Objects," Proceedings Supercomputing Conference, Reno, NV, November 1989.

[Chow:87] Chow, E., H. Madan, and J. Peterson, "A Real-Time Adaptive Message
Routing Network for the Hypercube Computer," Proceedings Eighth Real-Time
Systems Symposium, IEEE Computer Society, December 1987.

[Gottschalk:88] Gottschalk, T. D., 1988, "Concurrent Multiple Target Tracking,"
Proceedings of the Third Conference on Hypercube Concurrent Computers and
Applications, ACM, January 1988, Pasadena, CA, pp. 1247-1268.

[Halstead:85] Halstead, R. H., "MultiLisp: A Language for Concurrent Symbolic
Computation," ACM Transactions on Programming Languages and Systems, pp.
501-538, October 1985.

[Hoare:78] Hoare, C. A. R., "Communicating Sequential Processes," CACM 21:8, 1978,
666-677.

[Jefferson:87] Jefferson, D., et al., "Distributed Simulation and the Time Warp Operating
System," Proceedings Eleventh ACM Symposium on Operating Systems Principles,
Austin, TX, November 1987.

69

[Liskov:88] Liskov, B. "Distributed Programming in Argus," Communications of the
ACM, Vol. 31, No. 3, March 1988.

[McClelland:88] McClelland, J. L., and D. E. Rumelhart, "Explorations in Parallel
Distributed Processing: A Handbook of Models, Programs, and Exercises ,"
Bradford Books/MIT Press, Cambridge, MA, 1988.

[Pomerleau:881 Pomerleau, D. A., G. L. Gusciora, D. S. Touretzky, and H. T. Kung,
"Neural Network Simulation at Warp Speed: How We Got 17 Million Connections
Per Second," Proceedings of the IEEE International Conference on Neural
Networks, San Diego, CA, July 24-27 1988.

[Prelle:90] Prelle, M. J., T. J. Brando, E. H. Bensley, J. I. Leivent, R. J. Watro, and
A. M. Wollrath, "Distributed Object-Oriented Programming FY90 Final Report,"
MTR 11058, The MITRE Corporation, December 1990.

[Prelle:91] Prelle, M. J., A. M. Wollrath, T. J. Brando, E. H. Bensley, "The Impact of
Selected Concurrent Language Constructs on the SaM Runtime System," OOPS
Messenger, ACM Press, Vol. 2, No. 2, April, 1991.

[Prelle:92] Prelle, M. J. and A. M. Wollrath, "The SaM Synchronization Manager-
Distributed Object-Oriented Programming FY91 Final Report," MTR 11229,
January 1992.

[Reiher:90] Reiher, P., R. Fujimoto, S. Bellenot, and D. Jefferson, "Cancellation
Strategies in Optimistic Execution Systems," Proceedings of the SCS
Multiconference on Distributed Simulation, San Diego, CA, January 1990.

[Samadi:85] Samadi, B., "Distributed Simulation, Algorithms and Performance," Ph.D.
dissertation, UCLA, 1985.

[Tinker:88] Tinker, P., and M. Katz, "Parallel Execution of Sequential Scheme with
ParaTran," Proceedings of the Conference on Lisp and Functional Programming,
Snowbird, Utah, July 1988.

[Yonezawa:87] Yonezawa, A., E. Shibayama, T. Takada, and Y. Honda, "Modeling and
Programming in Object-Oriented Concurrent Language ABCL/1," in Object-
Oriented Concurrent Programming, edited by A. Yonezawa and M. Tokoro,
Cambridge, MA: MIT Press, 1987.

70

APPENDIX

APPLICATION LANGUAGE EXTENSIONS

free

Usage
free (instance)

Description
When an instance is no longer needed, the memory associated with that object can be

deallocated. The only argument to the free function is the instance that was created via a
makeinstance call.

Examples
#include "/vb/ann/cpm/lib/cpm.h" // includes all necessary cpm utilities

// including the string library class
class clock plainsclock;
class cuckoo_clock fancy_clock;
smString plain-name, fancy-name;

plainname.init("timex");
fancy_name.init("rolex");

H making use of the default makeinstance for the class clock...
plainclock = makeinstance(clock, plain-name);

//if the application programmer redefines makeinstance to accept
//one or more user-defined arguments, the following is possible...
fancy_clock = makeinstance(cuckoosclock, fancy-name, NumChimes);

H some other interesting code here...

free(plain-clock);
free(fancy-clock);

//NOTE: you do not free smStrings since they were not allocated
// using make-instance (they are statically allocated).

A-1

Multifutures

Using multifutures gives the programmer some control over concurrency in the
application program. By adding the result of a send or make instance to a multifuture, a
parallel thread of computation is created. The threads can be created first, before the
result of their computation is needed, thus increasing parallelism in the application
program. Using multifutures is a convenient way to reduce the overhead incurred by the
synchronization manager and to avoid unnecessary synchronizations in the application
program; at the same time, multifutures give the programmer some control over when
concurrency is exploited.

makemultifuture

Usage
makemulti future (multifuture-name)
multifuture multifuture-name;

Description
The function makemultifuture is a directive to the synchronization manager to create a
multifuture. Any multifuture should be declared using a multifuture type declaration.
The following manual pages will describe how to add to and retrieve values from the
multifuture.

Examples
multifuture mf:
makemultifuture(mO;

A-2

addmultifuture

Usage
add_multi future (multifuture-name, argument)

Description
Once the multifuture is created, values can be added until the end_multifuture function
is called (indicating no more values will be sent to the multifuture). The function
addmul ti future redirects the result of the send (which is the argument) to the
multifuture indicated by multifuture-name. No limit is placed on the number of values
that can be added to a multifuture (except for system memory requirements).

Examples
multifuture mf; fl declare multifuture
makemultifuture(mf); fl create multifuture
add_multifuture(mf, b->getxO); fl result of b->getxO is sent to mf
addmultifuture(mf, b->get_.yO); #/ result of b->get_yO is sent to mf

end multifuture

Usage
endmultifuture (multifuture-name)

Description
The function endmultifuture indicates that no more values will be added to the
multifuture (since the synchronization manager needs to be aware of the number of
values in the multifuture).

Examples
multifuture mf;
make_m ultifuture(mf);
for (i=O; i<NUMFOOS: i=i+1)

addmultifuture(mf, make_instance(foo));
endmultifuture(mf);

A-3

geLmultifuture

Usage
getmultifuture (multifuture-name, result-array, start, end)

Description
The function get-mul t ifuture retrieves values from the multifuture, multifuture-name.
The resultarray should be declared large enough to fit all the values added to the
multifuture. start and end indicate the range of indices for values; the start parameter
specifies the starting index of the values you wish to retrieve, and the end parameter
specifies the index of the last value to be retrieved from the multifuture. When this
function completes, the locations in array result array[start] to result-array[end] will
contain the values retrieved by the multifuture.

Examples
multifuture mf;
class foo fooresult[NUMFOOSI;

makemultifuture(mf);
H add values to multifuture...
for (i=0; i<NUMFOOS; i=i+1)

addmultifuture(mf, make instance(foo));
endmultifuture(mf);
/ now, retrieve values...
get-multifuture(mf, foo-result, 0, NUMFOOS);
//alternatively, these two statements can replace the one above...
get-multifuture(mf, foo result, 0, 5);
get-multifuture(mf, foo result, 6, NUMFOOS);
/ now, send each foo a print message...
for (i=0; i<NUMFOOS; i=i+1)

fooresult[i]->printo;

A-4

get-available-multifuture

Usage
int get-available-Multifuture (multifuture-name, result-array, start)

Description
The function get-available -multifuture is similar to get inultifuture except that
no ending index is specified. This function retrieves the values that the multifuture
contains so far. The number of values retrieved is returned by
get~available_multifuture. Note: at least one value will be retrieved.

Examples
multifuture, mf:
class foo foo-result[NUM-FOGS];
nfuture int i, num...got, num -values;

make-multifuture(mf);
for (i=0; i<:NUMFOGS; i=i+1)

add-multifuture(mf, make-instance(foo));
end-multifuture(mO);
numn-values = 0;
while (num -values < NUMFOGS) I

HI get the values as they come in...
num-got = get-available-multifuture (mf, foo result, num values);
for (i--num values; i<num~got + numn -values; i=i+l)

foo,-result[iI->do -useful~worko;
numn-values = num-got + numn-values;

A-5

freemultifuture

Usage
f ree_mu lt i future (multifuture-name)

Description
The function free_multifuture indicates that the multifuture is no longer needed by the

computation and that memory occupied by the multifuture may be freed when the
computation is committed (that is, when GVT passes the timestamp of the free message).

Examples
class foo fooresult[NUMFOOS];
multifuture mf;

makemultifuture(mf);
for (i=O; i<NUMFOOS; i=i+l)

addmultifuture(mf, make-instance(foo));
end_multifuture(mf);
// now, retrieve values...
get.multifuture(mf, foo result, 0, NUM FOOS);
free_multifuture(mf);
H now, send each foo a print message...
for (i=O; i<NUMFOOS; i=i+1)

fooresult[i]->printo;

A-6

touch

Usage
touch (future[,future]*)

Description
In some application programs, the programmer may wish to resolve a future before
passing it along to other objects. Resolving a future and instead transmitting its value to
multiple objects saves each object from resolving the future itself. Resolving futures in
advance can speed up application execution, since many methods will not have to block
while a future is being resolved that otherwise would have blocked had the future not
been resolved by the caller. The touch () function resolves each future in the parameter
list to its respective value, touch can take any number of arguments each of which must
be a future. Any variable that is not declared with the nfuture declaration may be a
future and can be resolved using touch.

Examples
#include "/vb/ann/cpm/lib/cpm.h" // includes all necessary cpm utilities

// including the string library class
class watch timex, movado;
smString watch-name;
int hours, minutes; //these two can be futures

watchname.init("timex"); // make a timex
timex = makeinstance(watch, watch-name);
watchname.init("movado"); //make a movado
movado = make instance(watch, watch-name);

hours = timex->get-hourso; //get time
minutes = timex->get.minuteso;
touch(hours, minutes); // resolve futures
movado->settime(hours, minutes); H set other watch
printf("The time is %2d:%2d\n", hours, minutes); H print time

Note: If the touch was not done in the above example, then both hours and minutes

(both futures after being set) would have been resolved twice--once in the current
method, and once in the watch::set time0 method.

A-7

setobject-type

set-objecLtype provides an interface that allows the user to specify the kind of
synchronization manager an application object should have. A Normal synchronization
manager application object is the only one supported at this time, however, it might be
useful to have special synchronization managers such as Read-Only, Write-Once-Only, or
Wild at some point in the future. In the current implementation of SaM, creators are
associated with Read-Only synchronization managers; futures are associated with Write-
Once-Only synchronization managers. Extending this idea to allow the user to identify
objects seems a natural enhancement. Wild application objects would have
synchronization managers that support an input queue but ignore timestamps entirely and
do not save states. Wild objects would not be allowed to interact with normal objects
except through a future. A normal object could create a wild object, send it a message
expecting a reply. Wild objects could create other wild objects to perform a part of the
computation that requires no synchronization. The result of a wild computation would be
returned through the future that was created by the normal object.
In order to set the object type simply do:

set object-type (READ-ONLY);
setobject-type (WILD);

If no type is set NORMAL is the default.

get-object-type

There is also an interface to find the object type for the next objtoL tnat will be
created (if not changed by set-objectjtypeo):

nextVtype = get_object_typeo;
switch (next type) I

case NORMAL:
printf("next object is NORMAL\.n"); break;

case READ-ONLY:
printf("next object is READ-ONLY'W'); break;

case WILD:
printf("next object is WILD~n"); break;

A-8

set-object-name

seLobject-name provides an interface for allowing synchronization managers to have
names associated with them. This is useful as a debugging and performance
enhancement device, for example, to see which objects are experiencing the most
rollbacks. In order to set an application object's synchronization manager's name simply
do:

a_name.init("Kumquat");
set-object-name (aname);
kumquat = makejinstance(cat);

If no name is set the empty string is the default.

setnext-creator

set-next_creator provides an interface that allows the user to determine which processor the
next object is created on. In this way the user can control the placement of individual
objects. For example, a copy of a read-only object (or maybe even a write-occasionally
object) can be placed on every processor. Other objects that require access to that object
could be told about the one that is on their processor. In order to set the next creator
simply do:

setnext_creator (someprocessor number);
foo-obj = make instance(foo, ...);

get-nextcreator

There is also an interface to find the next creator that the next object will be created on (if
not changed by setnextcreatoro):

proc-num = get-nextcreatorO;
printf("The next processor is: %d", procnum);

A-9

assert

For any concurrent class message, the programmer can define an assert method which
returns a boolean value indicating whether or not the message should processed, given
the current values of the instance variables and arguments. The assert method may look
at instance variables and arguments to the method, but it may not cause any futures to be
resolved or send any messages to concurrent objects. The assert method need only be
defined for those concurrent class methods the programmer wishes (i.e., assert methods
are not required for all concurrent class methods).

This example (taken from an early neural network application) demonstrates how to use
an assert method. The assert, in effect, will not allow any messages from future epochs to
be processed before the message for the current epoch is processed. The programmer
must be careful however when defining assert methods since an incorrectly defined assert
method can prevent the program from terminating.

assert OutputUnit:ChangeWeights(epochCount)
nfuture int epochCount;

ilIs the epochCount equal to the output unit's view of the of
I/ number epochs (netEpoch)?
return (netEpoch =- epochCount);

void OutputUnit::ChangeWeights(epochCount)
nfuture int epochCount;

J/ actual text of the method

netEpoch = netEpoch + 1; # increment output unit's epoch count

Note that the assert method only requires the key word assert before the method (no other

type is needed). An assert method also requires a return statement which returns TRUE or
FALSE. Statements other than the return statement can be included in the method, but the

programmer must be careful to make sure that no futures are resolved and that no

messages are sent to global objects. The best policy to follow is to only reference
variables that are defined with nfuture.

A-10

